Numerous Problems With ICR’s Rate Books

www.CreationismOnline.com

 

            Introduction

 ICR has spent much money (www.icr.org/rate) on its RATE project and produced two books. Volume one and two. The theory of accelerated decay has been strongly promoted in the book. If rocks started at zero age (creation week) and were then 

accelerated to 4.5 billion years old we would expect that rocks would only have that age range. Zero years old to 4.5 billion years old. Dates over 4.5 billion or negative/future dates below zero would be impossible. The fact is that a huge array of such

dates exist and refute both evolutionary ages and the ICR theory. Answers In Genesis (https://answersingenesis.org/answers/research-journal/v10/) promotes this false view as does Creation Ministries International

(http://creation.com/radiometric-dating-breakthroughs).

 

 

The ICR Accelerated Decay Model

Page

Subject

Author

3

Where did all the heat go?

Larry Vardiman

 

What about life on earth during the accelerated decay?

8

Where did all the heat go?

Larry Vardiman

 

What about life on earth during the accelerated decay?

 

God's method of creating on days 1 and 2 of the creation week.

19

God's method of creating on days 1 and 2 of the creation week.

Larry Vardiman

43

God's method of creating on days 1 and 2 of the creation week.

Donald DeYoung

333

God's method of creating on days 1 and 2 of the creation week.

Russell Humphreys

334

God's method of creating on days 1 and 2 of the creation week.

Russell Humphreys

340

God's method of creating on days 1 and 2 of the creation week.

Russell Humphreys

341

God's method of creating on days 1 and 2 of the creation week.

Russell Humphreys

351

BIBLE. Deuteronomy 32:22

Russell Humphreys

352

BIBLE. Numbers 16:30-33

Russell Humphreys

 

BIBLE. Amos 9:2

353

BIBLE. 2 Samuel 22:8-9

Russell Humphreys

 

BIBLE. 2 Samuel 22:8-9

 

BIBLE. Habakkuk 3:8-15

356

Why would God change decay rates?

Russell Humphreys

http://www.icr.org/i/pdf/research/rate-all.pdf

 

ICR proposes accelerated radioactive decay for 14Carbon in living organisms but not 14Carbon in diamonds. Some magic affected one 100% and the other 0 at the same time. The same would be true of coal and fossils containing 14Carbon.

 

14Carbon in living organisms are affected 100%

“Were there radioactive atoms in the tissues of creatures aboard the ark? The main ones are 40K and 14C. If creatures aboard the ark had the same percentages of those isotopes we have in our tissues today, and the acceleration applies to them as well as to everything else, they might not have survived.” ICR RATE book, Page 373. See also http://creation.com/c14-dinos.

 

14Carbon in diamonds are totally unaffected

After two half-lives, a quarter is left; after three half-lives, only an eighth; after 10 half-lives, less than a thousandth is left. In fact, a lump of 14C as massive as the earth would have all decayed in less than a million years.

http://creation.com/diamonds-a-creationists-best-friend. Sarfati claims that only one million years of decay would be needed to get rid of 14Carbon in diamonds. CMI and ICR then propose 4,500 million years of accelerated decay

[http://creation.com/radiometric-dating-and-old-ages-in-disarray] has happened and only one million is needed to get rid of 14Carbon in diamonds!

 

 

 

 

1. Russell Humphrey’s mathematics are way off.

ICR RATE book, Page 340. Russell Humphreys claims that decay rates must have been 750,000 times faster in the past. If we look at Riley’s article [Geochimica et Cosmochimica Acta, 1970, 34:713-725] we see that isotopic data can give calculated

ages of 900 billion years old. This would mean that that decay rates must have been 150 million times faster in the past. If we put isotope ratio tables from journal articles into Microsoft Excel 2007 and use Isoplot [http://www.bgc.org/isoplot_etc/isoplot.html]

we can get hundreds of dates over 100 billion years old.

http://www.creationismonline.com/website/geology.html

http://www.creationismonline.com/website/Dating.html

http://www.creationismonline.com/website/geology_column.html

             Isoplot has five different Uranium/Lead dating formulas for Microsoft Excel.

 

 

207Pb/206Pb Age (Million Years)                                       1

A=Pb76(207Pb/206Pb)

 

             206Pb/238U Age (Million Years)                                         2

A=Pb6U8(206Pb/238U)

 

207Pb/235U Age (Million Years)                                         3

A=Pb7U5(207Pb/235U)

 

208Pb/232Th Age (Million Years)                                      4

A=Pb8Th2(208Pb/232Th)

 

230Th/238U Age (Thousand Years)                                    5

A=Th230Age(230Th/20U, 234U/238U)

 

 

2. The Earth was in darkness

"This plasma [600 Million Centigrade] persists for several hours on the First Day of creation week, during which time beta decay freely takes place under the bare-nucleus conditions of all of the atoms."

http://creation.com/billion-fold-acceleration-of-radioactivity-demonstrated-in-laboratory

The Bible says that on day one of the creation week the Earth was in darkness. At 600 million degrees Kelvin the Earth’s surface would not be in darkness. The Sun radiance is 20,090,000 Watts/Square meter. Its surface temperature is 5,772 Kelvin.

If Earth’s temperature were at 600 million degrees Kelvin on day one of the creation week it would be 103,950 times hotter than the surface of the Sun. Its radiance is would be 103,950 x 20,090,000 = 2 x 1012 Watts/Square meter.

             Such conditions would be impossible during Noah’s flood where accelerated radioactive decay is also advocated. Where there two different mechanisms [creation week/ Noah’s flood] to start and stop the acceleration?

What were they other than ICR mysticism?

https://answersingenesis.org/geology/radiometric-dating/determination-decay-constants-half-lives-uranium/

 

3. Isotopic ratios

http://creation.com/radiometric-dating-breakthroughs

When physicist Dr Russell Humphreys was still at Sandia National Laboratories (he now works full-time for ICR),  he and Dr John Baumgardner (still with Los Alamos National Laboratory) were both convinced that they knew the direction in which to look for a definitive answer to the puzzle of why radiometric dating consistently [RUBBISH!]  gives ages of millions and billions of years.

 

 http://creation.com/radiometric-dating-and-old-ages-in-disarray

(1) the initial isotope amounts are known, (2) the decay rate has remained constant at today’s rate, and
(3) the sample has remained in a closed system for millions and billions of years.  The RATE group concludes that there was about 4 Ga of accelerated decay [RUBBISH!] at creation and about 500 Ma [RUBBISH!]  worth at the time of the Flood.

 If we use the computer program Isoplot [http://www.bgc.org/isoplot_etc/isoplot.html] and calculate the ages of the isotopic ratios in geology magazine articles we see why not dates have been put beside them. Many dates are negative or older than the            

evolutionary age of the universe. That is logically impossible and cannot be reconciled with accelerated decay.

Another nonsense quote! If 6 days [Exodus 20:8-11] corresponds to 4,000 million years of accelerated 207Pb/235U decay as CMI says, how can 206Pb/238U ratios give an age of 6,000 million years? Was the creation week 50% longer [Nine days long] in other parts of the world? 208Pb/232Th ratios give ages of 70,000 million years. Was the creation week 1750% longer [105 days long] in other parts of the world? The RATE team’s theories do not work and are rubbish. How can radiometric decay be happening at three different ways the same time? 207Pb/235U = 100%, 206Pb/238U = 150% and 208Pb/232Th = 1750%

  

4. Lead 207/206 ratios giving a uniform date of 5 billion years old.

If we use the computer program Isoplot [http://www.bgc.org/isoplot_etc/isoplot.html] and calculate the ages of the isotopic ratios in geology magazine articles we see why not dates have been put beside them. Many dates are negative or older than the evolutionary age of the universe. That is logically impossible. How can the rock have formed millions of years in the future? The dating methods contradict each other and give ages that disagree with the Geological Column and with accelerated decay.

 

Number Essay Title Adobe Acrobat File Pages Power Point File Pages HTML File Pages
1 Argon/Argon Dating Argon_Argon.pdf 10 Argon_Argon.pptx 23 Argon_Argon.htm 10
2 Future Radiometric Dating Future_Dating.pdf 10 Future_Dating.pptx 32 Future_Dating.htm 10
3 Impossible Radiometric Dates Impossible.pdf 9 Impossible.pptx 24 Impossible.htm 9
4 Concordia Isochron Dating Isochron_Dating.pdf 12 Isochron_Dating.pptx 29 Isochron_Dating.htm 12
5 Meteorite Dating Meteorite_Dating.pdf 28 Meteorite_Dating.pptx 54 Meteorite_Dating.htm 28
6 Modern Dating Methods Modern_Dating.pdf 14 Modern_Dating.pptx 41 Modern_Dating.htm 14
7 Negative Radiometric Dating Negative_Dating.pdf 6 Negative_Dating.pptx 21 Negative_Dating.htm 6
8 The Neodymium Samarium Method Neodymium_Samarium.pdf 13 Neodymium_Samarium.pptx 41 Neodymium_Samarium.htm 13
9 Rocks Older Than The Galaxy Older_Than_Galaxies.pdf 12 Older_Than_Galaxies.pptx 32 Older_Than_Galaxies.htm 12
10 Rocks Older Than The Solar System Older_Than_Solar_System.pdf 9 Older_Than_Solar_System.pptx 28 Older_Than_Solar_System.htm 9
11 Rocks Older Than The Earth Older_Than_The_Earth.pdf 10 Older_Than_The_Earth.pptx 28 Older_Than_The_Earth.htm 10
12 Rocks Older Than The Universe Older_Than_Universe.pdf 6 Older_Than_Universe.pptx 22 Older_Than_Universe.htm 6
13 The Osmium 187/186 Method Osmium_Dating.pdf 13 Osmium_Dating.pptx 36 Osmium_Dating.htm 13
14 The Potassium Argon Method Potassium_Argon.pdf 4 Potassium_Argon.pptx 16 Potassium_Argon.htm 4
15 The Rubidium Strontium Method Rubidium_Strontium.pdf 33 Rubidium_Strontium.pptx 87 Rubidium_Strontium.htm 33
16 The Rhenium/Osmium Method Rhenium_Osmium.pdf 7 Rhenium_Osmium.pptx 26 Rhenium_Osmium.htm 7
17 Rubidium/Strontium Dating Tas_Walker.pdf 14 Tas_Walker.pptx 40 Tas_Walker.htm 14
18 The Thorium Lead Method Thorium_Lead_Dating.pdf 23 Thorium_Lead_Dating.pptx 47 Thorium_Lead_Dating.htm 23
19 The Uranium 235 Method Uranium_235_Dating.pdf 7 Uranium_235_Dating.pptx 24 Uranium_235_Dating.htm 7
20 The Uranium 238 Method Uranium_238_Dating.pdf 16 Uranium_238_Dating.pptx 42 Uranium_238_Dating.htm 16
21 Very Old Rocks Very_Old_Rocks.pdf 13 Very_Old_Rocks.pptx 28 Very_Old_Rocks.htm 13
22 Radiometric Dating Versus The Bible Radiometric_Dating.pdf 11     Radiometric_Dating.htm 11
23 The Mythology Of Modern Dating Dating_Mythology.pdf 15 Dating_Mythology.pptx 43 Dating_Mythology.htm 15
24 Pauls Book Pauls_Book.pdf 296        
25 MAIN INDEX (Microsoft Excel) Main_Index.xlsm          
26 Use Isoplot Version 4.13 To Excel isoplot.html          
    Total Pages 296 Total Pages 764 Total Pages 295

 

http://www.creationismonline.com/website/Dating.html

       

1 Chemical Geology, Volume 211, 2004, Pages 87–109
2 Chemical Geology, Volume 233, 2006, Pages 1–45
3 Chemical Geology, Volume 236, 2007, Pages 27–41
4 Chemical Geology, Volume 259, 2009, Pages 143-151
5 Chemical Geology, Volume 66, 1987, Pages 193-208
6 Chemical Geology, Volume 93, 1991, Pages 231-243
7 Chinese Journal of Geochemistry, Volume 16, 1997, Pages 80-85
8 Contributions - Mineralogy and Petrology, Volume 114, 1993, Pages 171-188
9 Contributions Mineral Petrology, Volume 85, 1984, Pages 376-390
10 Contributions Mineral Petrology, Volume 90, 1985, Pages 162-171
11 Earth and Planetary Science Letters, Volume 104, 1991, Pages 1-15
12 Earth and Planetary Science Letters, Volume 113, 1992, Pages 107-128
13 Earth and Planetary Science Letters, Volume 134, 1995, Pages 169-185
14 Earth and Planetary Science Letters, Volume 142, 1996, Pages 501-512
15 Earth and Planetary Science Letters, Volume 165, 1999, Pages 117–127
16 Earth and Planetary Science Letters, Volume 183, 2000, Pages 93-106
17 Earth and Planetary Science Letters, Volume 240, 2005, Pages 605-620
18 Earth and Planetary Science Letters, Volume 244, 2006, Page 251–269
19 Earth and Planetary Science Letters, Volume 245, 2006, Pages 137–152
20 Earth and Planetary Science Letters, Volume 245, 2006, Pages 743–761
21 Earth and Planetary Science Letters, Volume 267, 2008, Pages 236–246
22 Earth and Planetary Science Letters, Volume 296, 2010, Pages 267–277
23 Earth and Planetary Science Letters, Volume 300, 2010, Pages 152–163
24 Earth and Planetary Science Letters, Volume 301, 2011, Pages 469–478
25 Earth and Planetary Science Letters, Volume 306, 2011, Pages 86–97
26 Earth and Planetary Science Letters, Volume 319-320, 2012, Pages 197–206
27 Earth and Planetary Science Letters, Volume 34, 1977, Pages 419-431
28 Earth and Planetary Science Letters, Volume 42, 1979, Pages 368-378
29 Earth and Planetary Science Letters, Volume 42, 1979, Pages 58-70
30 Earth and Planetary Science Letters, Volume 46, 1980, Pages 221-232
31 Earth and Planetary Science Letters, Volume 47, 1980, Pages 370-382
32 Earth and Planetary Science Letters, Volume 59, 1982, Pages 327-342
33 Earth and Planetary Science Letters, Volume 62, 1983, Pages 132146
34 Earth and Planetary Science Letters, Volume 7, 1969, Pages 141-147
35 Earth and Planetary Science Letters, Volume 76, 1985, Pages 57-70
36 Earth and Planetary Science Letters, Volume 94, 1989, Pages 236-244
37 Earth and Planetary Science Letters, Volume 94, 1989, Pages 78-96
38 Geochemistry And Geophysics Geosystems, Volume 7, 2006, Pages 1-29
39 Geochimica et Cosmochimica Acta, Volume 34, 1970, Pages 1039 - 1106
40 Geochimica et Cosmochimica Acta, Volume 40, 1976, Pages 635-643
41 Geochimica et Cosmochimica Acta, Volume 45, 1981, Pages 635 - 645
42 Geochimica et Cosmochimica Acta, Volume 56, 1992, Pages 347-368
43 Geochimica et Cosmochimica Acta, Volume 61, 1997, Pages 1713-1731
44 Geochimica et Cosmochimica Acta, Volume 61, 1997, Pages 5005-5022
45 Geochimica et Cosmochimica Acta, Volume 62, 1998, Pages 2823–2835
46 Geochimica et Cosmochimica Acta, Volume 62, 1998, Pages 3527–3540
47 Geochimica et Cosmochimica Acta, Volume 63, 1999, Pages 473–488
48 Geochimica et Cosmochimica Acta, Volume 71, 2007, Pages 1583-1604
49 Geochimica et Cosmochimica Acta, Volume 71, 2007, Pages 5514–5527
50 Geochimica et Cosmochimica Acta, Volume 72, 2008, Pages 2067-2089
51 Geochimica et Cosmochimica Acta, Volume 72, 2008, Pages 5799–5818
52 Geochimica et Cosmochimica Acta, Volume 73, 2009, Pages 469–488
53 Geological Society of London, Volume 229, 2004, Pages 133-150
54 Gondwana Research, Volume 11, 2007, Page 382–395
55 Gondwana Research, Volume 14, 2008, Page 644–662
56 Isotope Geoscience, Volume 1, 1983, Pages 23-38
57 Journal of Petrology, Volume 38, 1997, Pages 115-132
58 Journal of Petrology, Volume 39, 1998, Pages 1285-1306
59 Journal of Petrology, Volume 39, 1998, Pages 1847–1864
60 Journal of Petrology, Volume 39, 1998, Pages 711-748
61 Journal of Petrology, Volume 40, 1999, Pages 1399-1424
62 Journal of Petrology, Volume 42, 2001, Pages 731-763
63 Journal of Petrology, Volume 45, 2004, Pages 555-607
64 Journal of Petrology, Volume 46, 2005, Pages 829-858
65 Journal of Petrology, Volume 48, 2007, Pages 661-692
66 Journal of Petrology, Volume 52, 2011, Pages 401-430
67 Mereoritics And Planetary Science, Volume 35, 2000, Pages 341-346
68 Meteoritics And Planetary Science, Volume 42, 2007, Pages 1337-1350
69 Meteoritics And Planetary Science, Volume 46, 2011, Pages 35–52
70 Mineralium Deposita, Volume 34, 1999, Pages 273-283
71 Mineralogy and Petrology, Volume 47, 1993, Pages 103-126
72 Nature, Volume 368, 1994, Page 514-519 
73 Ore Geology Reviews, Volume 31, 2007, Pages 337–359
74 Precambrian Research, Volume 113, 2002, Pages 155–168
75 Precambrian Research, Volume 114, 2002, Pages 277–294
76 Precambrian Research, Volume 117, 2002, Pages 119-143
77 Precambrian Research, Volume 162, 2008, Pages 441–474
78 Precambrian Research, Volume 38, 1988, Pages 147-164
79 Precambrian Research, Volume 72, 1995, Pages 247-261
80 Precambrian Research, Volume 78, 1996, Pages 261-272
81 Precambrian Research, Volume 95, 1999, Pages 167-185
82 Science, Volume 282, 1998, Page 1481

 

5. Thorium/Lead Ratios giving ages over 10 billion years old

If we use the computer program Isoplot [http://www.bgc.org/isoplot_etc/isoplot.html] and calculate the ages of the isotopic ratios in geology magazine articles we see why not dates have been put beside them. Many dates are negative or older than the age of the universe. That is logically impossible. How can the rock have formed millions of years in the future? The dating methods contradict each other and give ages that disagree with the Geological Column and with accelerated decay.

 http://www.creationismonline.com/website/geology.html

http://www.creationismonline.com/website/Dating.html

1 Chemical Geology, Volume 200, 2003, Pages 71–87
2 Earth and Planetary Science Letters, Volume 105, 1991, Pages 154
3 Earth and Planetary Science Letters, Volume 134, 1995, Pages 169
4 Earth Planetary Science Letters, Volume 82, 1987, Pages 121–135
5 Geochemistry Geophysics Geosystems, Volume 4, 2003, Page 1089
6 Geochimica et Cosmochimica Acta, Volume 57, 1993, Pages 4687
7 Geochimica et Cosmochimica Acta, Volume 71, 2007, Pages 1290–1311
8 Geological Society of London, Volume 229, 2004, Pages 139
9 Geosphere, Volume 6, 2010, Pages 663-690
10 Journal of Petrology, Volume 38, 1997, Pages 115 
11 Journal of Petrology, Volume 38, 1997, Pages 124
12 Journal of Petrology, Volume 39, 1998, Pages 711
13 Journal of Petrology, Volume 40, 1999, Pages 1399
14 Journal of Petrology, Volume 45, 2004, Pages 556
15 Journal of Petrology, Volume 46, 2005, Pages 830
16 Journal of Petrology, Volume 48, 2007, Pages 667
17 Journal of Petrology, Volume 51, 2010, Pages 2005
18 Journal Petrology, Volume 34, 1993, Pages 125–172
19 Meteoritics & Planetary Science, Volume 39, 2004, Pages 2033
20 Nature Geoscience, Volume 4, 2011, Pages 883-887
21 Nature, Volume 485, 2012, Pages 627–630
 

6. Uranium/Lead Ratios giving ages between 5 billion to 57 billion years old

If we use the computer program Isoplot [http://www.bgc.org/isoplot_etc/isoplot.html] and calculate the ages of the isotopic ratios in geology magazine articles we see why not dates have been put beside them. Many dates are negative or older than the age of the universe. That is logically impossible. How can the rock have formed millions of years in the future? The dating methods contradict each other and give ages that disagree with the Geological Column and with accelerated decay.

http://www.creationismonline.com/website/geology.html

http://www.creationismonline.com/website/Dating.html

 

1 Canadian Journal of Earth Science, Volume 43, 2006, Pages 1419
2 Earth and Planetary Science Letters, Volume 105, 1991, Pages 149
3 Earth and Planetary Science Letters, Volume 113, 1992, Pages 107
4 Earth and Planetary Science Letters, Volume 134, 1995, Pages 169-185
5 Earth and Planetary Science Letters, Volume 37, 1977, Pages 1
6 Earth and Planetary Science Letters, Volume 73, 1985, Pages 269
7 Geochimica et Cosmochimica Acta, Volume 57, 1993, Pages 4687-4702
8 Geochimica et Cosmochimica Acta, Volume 71, 2007, Pages 3656
9 Geochimica et Cosmochimica Acta, Volume 72, 2008, Pages 2067
10 Journal of Petrology, Volume 38, 1997, Pages 115
11 Journal of Petrology, Volume 39, 1998, Pages 711–748
12 Journal of Petrology, Volume 41, 2000, Pages 759
13 Journal of Petrology, Volume 42, 2001, Pages 731
14 Journal of Petrology, Volume 45, 2004, Pages 555
15 Journal of Petrology, Volume 46, 2005, Pages 829-858
16 Journal of Petrology, Volume 48, 2007, Pages 661
17 Journal of Petrology, Volume 51, 2010, Pages 2003-2045

7. Journal articles with negative dates or over 5 billion years old

Download Excel file:         http://www.creationismonline.com/ICR/AA_Search.xlsm

Download Excel file:         http://www.creationismonline.com/ICR/AA_Index.xlsm

Download Excel file:         http://www.creationismonline.com/ICR/AB_Index.xlsm

Download Excel file:         http://www.creationismonline.com/ICR/AC_Index.xlsm

Download Excel file:         http://www.creationismonline.com/ICR/AD_Index.xlsm

 

1 Ar-39/Ar-40 Dating of Mesosiderites, Geochimica et Cosmochimica Acta, 1990, 54:2549-2564
2 39Ar-40Ar Ages of Eucrites, Meteoritics And Planetary Science, 2003, 38:669–710
3 Ar diffusion properties, Meteorites, Geochimica et Cosmochimica Acta, 1980, 44:1667-1682
4 Argon-39/Argon-40 Ages, Meteoritics And Planetary Science, 2001, 36:107-122
5 U-Th-Pb dating of Abee E4 Meteorite, Earth Planetary Science Letters, 1983, 62:132-146
6 40Ar-39Ar Chronology, Meteoritics And Planetary Science, 2009, 44:293-321
7 40-Ar / 39-Ar Ages of Allende, Icarus, 1980, 42:380-405
8 The Fossil LL6 Chondrite, Geochimica et Cosmochimica Acta, 2010, 74:1734-1747
9 40Ar-39Ar Dating of Pseudo Tachylytes, Earth Planetary Science Letters, 2004, 223:349-364
10 Location of extraneous argon, Chemical Geology, 1990, 80:201-204
11 Excess Argon In Ultramafic Rocks, Earth Planetary Science Letters, 1974, 22:145-156
12 Analyses of the chondritic meteorite Orvinio, Meteoritics And Planetary Science, 2004, 39:1475-1493
13 Shocked meteorites: Argon-40-argon-39, Meteoritics And Planetary Science, 1997, 32:647-670
14 The Strangways impact structure, Earth Planetary Science Letters, 1999, 172:199–211
15 40Ar-39Ar Quartz Ages, Geochimica et Cosmochimica Acta, 2006, 70:2573-2575
16 The Peace River shocked M chondrite, Geochimica et Cosmochimica Acta, 1988, 52:2487-2499
17 History Of The Acapulco Meteorite, Geochimica et Cosmochimica Acta, 1997, 61:3477-3501
18 Pressure Metamorphism in Northeast Japan, Gondwana Research, 2005, 8:617-621
19 40 Ar/39ar Dating Of The Long Range Dikes, Earth Planetary Science Letters, 1974, 22:256-266
20 Potassium: Argon Dating of Iron Meteorites, Science, 1967, 155:999-1000
21 Potassium-argon age of iron meteorites, Geochimica et Cosmochimica Acta, 1958, 15:40-50
22 Ar/Ar dating of inclusions from IAB iron meteorites, Geochimica et Cosmochimica Acta, 1979, 43:1829-1840
23 K/Ar Age Determinations of Iron Meteorites, Earth Planetary Science Letters, 1968, 4:84-88
26 African Peridotite Xenoliths, Geochimica et Cosmochimica Acta, 1989, 53:1583-1595
27 Upper Crust in North-East Australia, International Journal Earth Science, 2012, 101:1091-1109
29 Silica Mineral Formation, Geochimica et Cosmochimica Acta, 2003, 67:1145-1176
31 Rb-Sr Ages Of Iron Meteorites, Earth Planetary Science Letters, 1967, 2:397-408
32 Isotopic discrepancies in Black Hills, South Dakota, Geochimica et Cosmochimica Acta, 1970, 34:713-725
33 Rhenium-187-Osmium-187 in iron meteorites, Meteoritics And Planetary Science, 1998, 33:647-653
34 Antarctic LL-chondrites, Geochimica et Cosmochimica Acta, 1990, 54:3509-3523
35 North Western Wyoming Craton, Earth Planetary Science Letters, 1994, 126:457-472
36 Age and Origin of Base and Precious Metal, Economic Geology, 2002, 97:35-37
37 Stabilisation of Archaean lithosphere, Earth Planetary Science Letters, 1995, 134:341-357
38 The Siberian Craton, Geochimica et Cosmochimica Acta, 1995, 59:959-977
39 The Study of Molybdenites, Earth Planetary Science Letters, 1982, 61:291-296
40 Reliable Re-Os Ages, Geochimica et Cosmochimica Acta, 1993, 57:1625-1628
41 Evolution of the South China Block, Geochimica et Cosmochimica Acta, 2009, 73:4531–4557
42 The North China Craton, University Maryland, Thesis, 2011, Pages 1-238
43 Rhenium/Osmium Geochronology of Oxide Minerals, University Alberta, Thesis, 2010, Pages 1-152
44 Rocks From the Earth’s Mantle, University Berlin, Thesis, 2013, Pages 1-186
45 Hebi, North China Craton, Chemical Geology, 2012, 328:123–136
46 Re–Os Isotopic Results, Chemical Geology, 2012, 291:186–198
47 Lithospheric Mantle Evolution, Lithos, 2011, 125:405–422
48 The age of Lithospheric Mantle, Chemical Geology, 2003, 196:107–129
49 Osmium Isotopes, Chemical Geology, 1996, 130:55-64
50 Evolution Beneath the Kaapvaal Craton, Chemical Geology, 2004, 208:89-118
51 The Age of Continental Roots, Lithos, 1999, 48:171-194
52 Archean Man Shield, West Africa, Precambrian Research, 2002, 118:267-283
53 Diamond Formation Episodes, Contributions Mineral Petrology, 2009, 157:525–540
54 Re/Os Isotopes of Sulfides, Lithos, 2008, 102:43-64
55 Canadian Cordillera lithosphere, Chemical Geology, 2000, 166:85-101
56 Lithospheric Mantle and Diamonds, Lithos, 2009, 112-S:1120-1132
57 Three Apollo 14 Basalts, Earth Planetary Science Letters, 1972, 14:281-304.
59 Natural Radionuclide Mobility, Geochimica et Cosmochimica Acta, 2008, 72:2067-2089
60 Isotopic Lead Ages Of Meteorites, Earth Planetary Science Letters, 1973, 19:321-329
62 The Allende and Orgueil Chondrites, Geochimica et Cosmochimica Acta, 1976, 40:617-634
63 U-Pb ages of angrites, Geochimica et Cosmochimica Acta, 2008, 72:221-232
64 Pb isotopic age of the Allende chondrules, Meteoritics And Planetary Science, 2007, 42:1321-1335
65 Precise U-Pb dating, Geochimica et Cosmochimica Acta, 2005, 69:505-518
66 Single grain (U-Th)/He ages, Acapulco meteorite, Earth Planetary Science Letters, 2003, 209:323-336
68 Barren Miocene granitoids, Andean Geology, 2010, 37:1-31
69 Early Archean partial melting events, University Bonn, Thesis, 2004, Pages 1-132
70 Isotopic signatures in Zealandia, Geology, 2012, 1-19
71 Mantle xenoliths from North Korea, Geology, 2010, 38:799-802
72 Re-Os Geochronology of Oxide Minerals, University Alberta, Thesis, 2010, Pages 1-153
73 North Patagonian Mantle Xenoliths, Journal of Petrology, 2016, 57:685-715
74 Age and geochemistry of lithospheric mantle, University Maryland, Thesis, 2015, Pages 1-17
75 The Scottish margin of the North Atlantic Craton, Precambrian Research, 2014, 250:97-126
76 Xenoliths from the Bohemian Massif, Chemical Geology, 2016, 430:90-107
77 Re-Os systematics of peridotites, Journal of the Geological Society, 2011, 168:1201-1214
78 Constraints on mantle processes and late, University Berlin, Thesis, 2014, Pages 1-168
79 The Taitao Ophiolite, Southern Chile, University Maryland, Thesis, 2007, Pages 1-117
80 Samarium/Neodymium geochronology, University Boston, Thesis, 2014, Pages 1-207
81 Principles of Re-Os Isotopic System, Journal Petrology Society Korea, 2006, 15:106-117
82 The western North China Craton, Lithos, 2012, 149:100-114
83 Single abyssal peridotite sulfides, Earth Planetary Science Letters, 2012, 359:279-293
86 The Kaapvaal Cratonic Lithospheric Mantle, Journal Of Petrology, 2007, 48:589-625
87 In Situ Analysis of Sulphides, Earth Planetary Science Letters, 2002, 203:651-663
88 Rb-Sr And Sm-Nd Studies, Chemical Geology, 1985, 52:249-271
89 Norwegian Caledonides: An isotopic investigation, Lithos, 2010, 117:1-19
92 Multi-stage origin of Roberts Victor eclogites, Lithos, 2012, 142-143:161-181
93 Re-Os systematics of mantle xenoliths, Geochimica et Cosmochimica Acta, 1999, 63:1203-1217
94 The Raobazhai peridotite massifs, Chemical Geology, 2009, 268:1-14
95 In situ Re–Os evidence, Journal of Asian Earth Sciences, 2013, 62:37-50
96 Lu-Hf Geochronology, Chemical Geology, 1997, 142:63-78
97 Isotopic Disequilibrium, Chemical Geology, 2000, 162:169-191
98 Multiple Metasomatic Events, Lithos, 2009, 112-S:896-912
101 Re–Os Evidence, Chemical Geology, 2007, 236:323-338
104 Central Asian Orogenic Belt, Lithos, 2011, 126:233-247
105 Geochronology of Quaternary Opal, Geochimica et Cosmochimica Acta, 2000, 64:2913-2928
105 The Mamonia complex, Cyprus, Chemical Geology, 2008, 248:195-212
106 A Paleozoic Convergent Plate, Chemical Geology, 2004, 208:141-156
107 Northern Canadian Cordillera Xenoliths, Geochimica et Cosmochimica Acta, 2000, 64:3061-3071
108 Xenoliths from Yangyuan and Fansi, Lithos, 2008, 102:25-42
109 Formation of the North Atlantic Craton, Chemical Geology, 2010, 276:166-187
110 In situ Measurement of Re-Os Isotopes, Geochimica et Cosmochimica Acta, 2002, 66:1037-1050
111 Re–Os isotope constraints, Earth and Planetary Science Letters, 2008, 268:89-101
112 Highly siderophile element fractionations, Earth and Planetary Science Letters, 2010, 297:287–297
113 Archean mantle residues, Earth and Planetary Science Letters, 2015, 424:109-118
114 Xenoliths from the Obnazhennaya kimberlite, Earth and Planetary Science Letters, 2015, 428:108-119
115 Osmium mass balance in peridotite, Geochimica et Cosmochimica Acta, 2011, 75:5574-5596
116 Mantle keel beneath West Greenland, Geochimica et Cosmochimica Acta, 2017, 203:37-53

 

Argon/Argon Ages

Reference

Minimum Age

Maximum Age

Age Difference

Age

Number

106 Years

106 Years

106 Years

Ratio

1

1,770

13,960

12,190

6.89

2

162

9,669

9,507

58.69

3

120

9,710

9,590

79.92

4

1,102

8,058

6,956

6.31

5

3,560

8,900

5,340

1.50

6

94

14,917

14,823

157.69

7

1,871

7,460

5,589

2.99

8

164

11,250

11,086

67.60

9

42

7,347

7,305

173.93

10

1,700

22,090

20,390

11.99

11

580

9,840

9,260

15.97

12

324

17,178

16,854

52.02

13

506

13,348

12,842

25.38

14

633

8,569

7,936

12.54

15

1,115

9,969

8,854

7.94

16

510

7,100

6,590

12.92

17

3,841

11,421

7,580

1.97

18

7,700

16,300

8,600

1.12

19

651

18,620

17,969

27.60

 

Rubidium/Strontium Ages

Reference

Minimum Age

Maximum Age

Age Difference

Age

Number

106 Years

106 Years

106 Years

Ratio

31

3,700

9,300

5,600

1.51

32

1,400

900,000

898,600

641.86

33

1,180

13,700

12,520

10.61

34

3,110

7,330

4,220

1.36

35

-3,440

15,500

18,940

5.51

36

79

23,312

23,233

294.09

38

5,445

12,716

7,271

1.34

88

267

20,000

19,733

73.91

89

-31,071

76,523

107,594

3.46

92

32

6,874

6,842

213.81

97

-15

201

216

14.40

 


 

Rhenium/Osmium Ages

Reference

Minimum

Maximum

Difference

Reference

Minimum

Maximum

Difference

Number

106 Years

106 Years

106 Years

Number

106 Years

106 Years

106 Years

37

100

15,600

15,500

77

-2,860

2,820

5,680

38

-1

11,000

11,001

78

-9,260

1,620

10,880

39

2,700

5,800

3,100

79

-111,000

1,500

112,500

40

2,655

6,300

3,645

80

-15,000,001

14,999,999

30,000,000

41

-59,500

25,900

85,400

81

-770

6,790

7,560

42

-30,000

40,000

70,000

82

-1

2,240

2,241

43

-3,700

38,190

41,890

83

-2,500

2,800

5,300

44

-9,260

3,200

12,460

86

600

34,600

34,000

45

-3,100

8,400

11,500

87

-32,000

34,000

66,000

46

-675

10,430

11,105

93

-1

4,000

4,001

47

-24,710

8,620

33,330

94

-27,744

3,094

30,838

48

150

15,410

15,260

95

-79,140

144,550

223,690

49

90

6,900

6,810

101

-3,830

10,620

14,450

50

-279,000

79,000

358,000

104

-3,830

10,620

14,450

51

2,780

8,380

5,600

105

-1

1,550

1,551

52

1,390

77,160

75,770

106

-4,300

9,100

13,400

53

-51,000

10,300

61,300

107

-1

4,500

4,501

54

-47,693

39,229

86,922

108

-10,800

9,700

20,500

55

-1

748

749

109

-14,258

6,994

21,252

56

1,980

7,850

5,870

110

-7,120

7,690

14,810

69

-8,620

3,220

11,840

111

30

52,250

52,220

70

-6,240

3,510

9,750

112

-8,600

40,000

48,600

72

-279,000

38,190

317,190

113

-11,800

27,500

39,300

73

-2,400

10,700

13,100

114

-4,040

8,520

12,560

74

-2,080

21,500

23,580

115

-1

1,640

1,641

75

-7,307

3,505

10,812

116

-11,275

3,426

14,701

76

-1

68,000

68,001

 

 

 

 


 

Other Very Long Age Dating Methods

Dating

Reference

Minimum Age

Maximum Age

Age Difference

Age

Method

Number

106 Years

106 Years

106 Years

Ratio

K/Ar

20

4,700

10,400

5,700

1.21

K/Ar

21

5,300

13,000

7,700

1.45

K/Ar

22

4,460

9,500

5,040

1.13

K/Ar

23

4,200

7,400

3,200

0.76

Lu/Hf

27

-3,220

3,870

7,090

2.20

Lu/Hf

68

-8,800

-630

8,170

0.93

Lu/Hf

71

-1,649

8,590

10,239

6.21

Lu/Hf

86

-320

1,730

2,050

6.41

Lu/Hf

92

-12,340

19,870

32,210

2.61

Lu/Hf

101

-30

14,650

14,680

489.33

Lu/Hf

104

-9,270

14,650

23,920

2.58

Nd/Sm

38

-1

3,200

3,201

3,201.00

Nd/Sm

26

1,070

12,600

11,530

10.78

Nd/Sm

27

-800

9,730

10,530

13.16

Nd/Sm

86

-2,247

96,661

98,908

44.02

Nd/Sm

92

-22,420

8,100

30,520

1.36

Nd/Sm

96

-659

1,137

1,796

2.73

Nd/Sm

98

-2,192

2,013

4,205

1.92

Nd/Sm

101

820

5,910

5,090

6.21

Nd/Sm

104

490

5,910

5,420

11.06

 

 

Uranium/Lead Age Dating Methods

Dating

Reference

Minimum Age

Maximum Age

Age Difference

Age

Method

Number

106 Years

106 Years

106 Years

Ratio

Th/Pb

57

4,010

28,140

24,130

6.02

Th/Pb

62

4,810

16,490

11,680

2.43

Th/Pb

59

4

82,030

82,026

20,506.50

Th/Pb

59

-98,470

262,350

360,820

3.66

U/Pb

60

4,126

8,615

4,489

1.09

U/Pb

62

4,920

9,860

4,940

1.00

U/Pb

62

4,700

5,780

1,080

0.23

U/Pb

63

3,728

6,625

2,897

0.78

U/Pb

64

1,799

10,066

8,267

4.60

U/Pb

65

4,249

6,473

2,224

0.52

U/Th

66

1,452

4,909

3,457

2.38

Pb/Pb

62

4,467

4,569

102

0.02

Pb/Pb

29

-3,879

11

3,890

1.00

 

 

8. Historic volcanic eruptions

If accelerated decay causes long ages we would expect modern volcanic eruptions [zero accelerated decay] would be dated at only hundreds of years old. If we look at calculated dates in the articles or calculate dates from isotope ratio tables we get dates millions or billions of years old. No accelerated decay could possibly be involved.

 http://www.creationismonline.com/ICR/History_01_To_24.xlsm

http://www.creationismonline.com/ICR/History_25_To_50.xlsm

http://www.creationismonline.com/ICR/History_51_To_75.xlsm

http://www.creationismonline.com/ICR/Historic_Eruptions.pdf

1 Bulletin Volcanology, 1998, 59:577–592
2 Bulletin Volcanology, 2007, 69:259-263
3 Chemical Geology, 2009, 265:272–278
4 Chemical Geology, 2009, 265:289-302
5 Contributions Mineralogy Petrology, 2001, 142:43-57
6 Contributions Mineralogy Petrology, 2008, 156:103-118
7 Contributions Mineralogy Petrology, 2014, 168:1-28
8 Earth and Planetary Science Letters, 2000, 175:69-86
9 Earth and Planetary Science Letters, 2006, 245:743-761
10 Earth and Planetary Science Letters, 2008, 265:748-765
11 Earth and Planetary Science Letters, 2011, 303:37–47
12 Geochemical Journal, 2008, 42:461-479
13 Geochemistry, Geophysics & Geosystems, 2013, 14:4849-4873
14 Geochimica et Cosmochimica Acta, 1997, 61:3789-3801
15 Geochimica et Cosmochimica Acta, 2006, 70:3401-3420
16 Geology, 2005, 33:897-900
17 Journal of Geophysical Research, 1968, 73:4601-4607
18 Journal of Geophysical Research, 2003, 108:1-25
19 Journal of Geophysical Research, 2010, 115:1-22
20 Journal of Geophysical Research, 2012, 117:1-18
21 Journal of Petrology, 1996, 37:95-115
22 Journal of Petrology, 1998, 39:859-880
23 Journal of Petrology, 1999, 401321–1342
26 Journal of Petrology, 2000, 41:961-990
27 Journal of Petrology, 2003, 44:1703-1726
29 Journal of Petrology, 2003, 44:457-489
31 Journal of Petrology, 2003, 44491–515
32 Journal of Petrology, 2004, 45:203-219
33 Journal of Petrology, 2004, 451845–1875
34 Journal of Petrology, 2007, 48:2407-2430
35 Journal of Petrology, 2008, 49:1297-1318
36 Journal of Petrology, 2009, 50:507-529
37 Journal of Petrology, 2010, 51:1507-1540
38 Journal of Petrology, 2012, 53:271-297
39 Journal of Petrology, 2012, 53:27-65
40 Journal of Volcanology and Geothermal Research, 2005, 146:139-170
41 Journal of Volcanology and Geothermal Research, 2006, 158:281-295
42 Journal of Volcanology and Geothermal Research, 2008, 177:606-618
43 Journal of Volcanology and Geothermal Research, 2009, 184:63-78
44 Lithos, 2005, 81:255-277
45 Lithos, 2011, 126:198–211
46 Mineralogy and Petrology, 2001, 73:121-143
47 Mineralogy and Petrology, 2001, 73:145-176
48 Proceedings Radiochimica Acta, 2011, 1:335-338
49 Radio Isotopes, 2007, 56:795-809
50 Volcanism in Hawaii, 1987, 26:723-744
 

9. Andrew Snellings Long Ages

Snelling devotes 180 pages of the RATE book (Volume 1, pages 123-304) to show that radiometric dating is based on unprovable assumptions concerning the initial composition and later contamination. If this is true how do you know 4.5 billion years of accelerated decay has happened? How do you know that initial composition and contamination caused the entire age? He devotes much time to discrediting it as wrong but must also accept it as accurate to get the 4.5 billion value. He acknowledges (Volume 1, pages 140-147) that diamonds have been dates at 5.7, 6 and 9.5 billion years old respectively and puts this down to contamination. That could just as easily apply to any other date. How does he differentiate between dates caused by accelerated decay and contamination? How can he tell if half the date is one and the other half is the other? E.g. a rock is dated a one billion years old. 500 million years could be from contamination and the other half from accelerated decay.

 

paul_nethercott@live.com.au

www.creationismonline.com