Impossible Radiometric Dates

By Paul Nethercott April 2013

Introduction

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. Standard evolutionist publications give the age of the universe as 13.75 Billion years.

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ⁴ "The Solar System, formed between 4.53 and 4.58 billion years ago." ¹ "The age of 4.54 billion years found for the Solar System and Earth." ¹ "A valid age for the Earth of 4.55 billion years." ^{5,6}

Evolutionists give the age of the galaxy as "11 to 13 billion years for the age of the Milky Way Galaxy." ^{1,7} Let us remember this as we look at the following dating as given in secular science journals.

Evolution Beneath the Kaapvaal Craton

These rocks from South Africa were dated ⁸ in 2004 using the Rhenium/Osmium dating method. The rock samples gave ages ⁹ between -279 and 79 billion years old! There is a 358,000 million year ⁹ spread of dates between the youngest [Negative] and the oldest [Positive] ages. Of the 374 dates, 92 [25%] are negative. The author admits in several places that many ages are impossibly old or young:

"In some cases these define plausible ages (Fig. 8a) but in most the 'ages' are greater than the age of the Earth (Fig. 8b), and all of these correlations are regarded as mixing lines." ¹⁰

"Both types of high-Fe samples have high proportions of sulfides with young to negative TRD ages." 11

"Negative model ages are meaningless numbers, and are plotted at increments of .0.1 Ga to illustrate the relative abundance of sulfides." ¹¹

 Table 1

 Average
 -5
 3

 Maximum
 5
 79

 Minimum
 -279
 -124

Table 2

Age Type	Amount	Percent
Negative Ages	92	24.59
Older Than The Earth	35	9.35
Older Than The Galaxy	11	2.94
Older Than The Universe	8	2.13

Central Asian Orogenic Belt

These rocks from Northern China were dated ¹² in 2010 using the Rhenium/Osmium dating method. The rock samples in table 2 in the article gave ages ¹³ between -9 and 14 billion years old! There is a 14,450 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The rock samples in table 3 in the article gave ages ¹⁴ between -3.8 and 10.6 billion years old! There is a 23,920 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits in several places that many ages are impossibly old or young:

"Whereas two samples give model ages close to, or even greater than, the age of the Earth." 15

"Other samples give TMA either older than the age of the Earth or a future age, suggesting a disturbance of the Re-Os isotope system in these samples." ¹³

"Thirteen Keluo mantle xenoliths yield impossible TMA model ages, i.e., negative or greater than the Earth's age, reflecting the modification of Re/Os ratios shortly before, during or since basalt entrainment." ¹⁶

Table 3 187Re/188Os 187Re/188Os **Billion Years Billion Years Average** 0.94 0.86 **Maximum**

10.62

-3.83

2.09

-0.33

Minimum

Table 4 147Sm/144Nd 176Lu/177Hf **Billion Years Billion Years Average** 2.06 0.73 **Maximum** 5.91 14.65 **Minimum** -9.27 0.49

If we use the Rhenium/Osmium dating formula shown in Gunter Faure's book 17 and enter a set of isotopic ratios listed in the original online article 18 we find the rock formation is less than 500 thousand years old.

$$t = \frac{2.303}{\lambda} \log \left(\frac{(187Os/188Os) - (187Os/188Os)_0}{(187 \text{ Re}/188Os)} + 1 \right)$$
$$\lambda = \frac{0.693}{h}$$

h = half life, 41.6 billion yearst =the rocks age in years

<u>Norwegian Caledonides</u>

These rocks from western Norway were dated ¹⁹ in 2009 using the Samarium/Neodymium dating method. The rock samples in the article gave ages ²⁰ between -64 and 76 billion years old! There is a 141,100 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits in several places that many ages are impossibly old or young:

"Re-Os model ages determined by LA-ICPMS from Fe-Ni sulfides (primarily pentlandite) scatter across the entire history of the Earth, and a few give meaningless future ages or ages older than the Earth." 21

"Table 2 lists model ages based on primitive (CHUR) and depleted (DM) mantle models. The model ages show enormous scatter both within and between bodies and range from meaningless future dates to equally meaningless dates older than the Earth." 22

"These filters eliminate most of the negative dates and leave only three apparent ages older than the Earth." 22

Page 2 www.creation.com

Table 5

	Million Years	Million Years
Average	4,510	1,400
Maximum	76,523	40,384
Minimum	-7,491	-64,577

Re-Os Isotopes of Sulfides

These rocks from eastern China were dated ²³ in 2007 using the Rhenium/Osmium dating method. The rock samples in the article gave ages ²⁴ between -47 and 39 billion years old! There is an 86,900 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. Out of the 348 dates, 72 (21%) were negative and 19 (5%) were older than the evolutionist age of the Earth. The author admits in several places that many ages are impossibly old or young:

"Re/Os versus TMA and TRD model ages, showing how samples with higher Re/Os may give 'future' ages, or ages older than Earth." ²⁵

"Many of the peridotites studied here contain several generations of sulfides, spanning from Archean to 'future' model ages." ²⁵

"However, TMA calculations may yield both future ages and ages older than the Earth, because Re may be added to, or removed from, a xenolith by processes in the mantle and in the host basalt." ²⁶

"A plot of TRD model ages that includes the "future" ages required by sulfides with super chondritic 1870s/1880s shows a marked peak at -180 Ma for the samples from the Cathaysia block." ²⁷

Table 6

	Million Years	Million Years
Average	462	1,369
Maximum	4,461	39,229
Minimum	-6,558	-47,693

Archean Man Shield, West Africa

These rocks from Sierra Leone were dated ²⁸ in 2001 using the Rhenium/Osmium and Uranium/Lead dating method. The Uranium/Lead dating system gave an average age ²⁹ of 2.5 billion years. The Rhenium/Osmium dating system gave an average age ³⁰ of 8 billion years. The rock samples in the article gave ages ³⁰ between 1.2 and 77 billion years old! There is a 76,000 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits in several places that many ages are impossibly old or young:

"For the high MgO samples, more than half of the Re/Os model ages are older than the age of the Earth, indicating they either experienced recent Re loss or gain of radiogenic Os." ³¹

"Five out of 13 of the low MgO samples also have Re/Os model ages older than the Earth." 31

Table 7

Statistics	Re/Os	206Pb/238U	207Pb/235U	207Pb/206Pb
Average	8,092	2,367	2,649	2,910
Maximum	77,160	3,185	3,412	3,562
Minimum	1,390	1,204	1,873	2,743

Lithospheric Mantle Evolution

These rocks from north Queensland were dated ³² in 2010 using the Rhenium/Osmium dating method. The rock samples in the article gave ages ³³ between -24 and 8.6 billion years old! There is a 33,330 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. Out of the 54 dates, 13 (24%) were negative and two were older than the evolutionist age of the Earth. The author admits that many ages are impossibly old or young:

"Sulfides deposited from fluids with variable Re/Os have Os-isotope compositions that either plot in the field with γ Os>0 and Re/Os> CHUR, and with negative TRD and TMA ages or they plot in the field with γ Os>0 and Re/Os> CHUR, and with negative TRD ages." ³⁴

	<u>Table 8</u>	
	Billion Years	Billion Years
Average	-0.44	0.93
Maximum	8.62	3.36
Minimum	-24.71	-1.75

Upper Crust in North-East Australia

These rocks from north Queensland were dated ³⁵ in 2010 using the Rhenium/Osmium dating method. The rock samples in the article gave ages ³⁶ between -3.2 and 9.7 billion years old! There is a 12,950 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. Out of the 31 dates, 6 (20%) were negative and one was older than the evolutionist age of the Earth. The author admits that many ages are impossibly old or young:

"Some garnet-rich granulites from the McBride Province yielded negative Hf and Nd model ages, whereas the Mt Quincan granulite yields model ages both older than the Earth and negative; these are not useful and are rejected." ³⁷

	Table 9	
Average	2.01	1.50
Maximum	9.73	3.97
Minimum	-0.80	-3.22

The Kaapvaal Cratonic Lithospheric Mantle

These rocks from South Africa were dated ³⁸ in 2006 using the Samarium/Neodymium and Lutetium/Hafnium dating methods. The rock samples in the first table [Table 10] in the article gave ages ³⁹ between -67 and 30 billion years old! There is a 97,790 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. Out of the 57 dates, 17 (30%) were negative and four were older than the evolutionist age of the Earth. The author admits that many ages are impossibly old or young:

"The large difference in Sm/Nd, but the relatively similar Nd isotope compositions of the garnet and cpx from the same sample result in generally young two-point cpx garnet Sm/Nd 'ages' for the Kimberley samples ranging from negative to 202~Ma." 40

"Evidence that complete equilibration was not achieved in many of the samples comes from the observation that tie-lines connecting the garnet and Sm/Nd data for seven samples provide ages younger than the time of kimberlite eruption, including a number of samples that give negative ages." ⁴¹

"Negative Sm/Nd garnet ages are not uncommon for peridotite xenoliths and were first described in samples from Kimberley." 41

Table 10

Minimum Maximum
-67 49 4 85

-67.49 4.85 -8.15 25.46 -2 30.3

If we put the Samarium/Neodymium and Lutetium/Hafnium ratios in first table ³⁹ in the article into Microsoft Excel and use the dating formulas ^{42, 43} listed in Gunter Faure's book we find that the average age is just 100 million years! The spread of dates is not 100 billion years but just 100 million years!

$$t = \frac{2.303}{\lambda} \log \left(\frac{(143Nd/144Nd) - (143Nd/144Nd)_0}{(144Sm/147Nd)} + 1 \right)$$

h = half life, 106 billion years

$$t = \frac{2.303}{\lambda} \log \left(\frac{(176Hf/177Hf) - (176Hf/177Hf)_0}{(176Lu/177Hf)} + 1 \right)$$

h = half life, 37.3 billion years

Table 11

Billion Years

0.6

12.2

14.5

21.8

If we look at the dates in table eleven ⁴⁴ there is a <u>34,000</u> million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. If we look at the dates in table twelve ⁴¹ there is a <u>99,908</u> million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

34.6

Table 12

Statistical	Billion Years	Billion Years
Data	Sm-Nd	Lu-Hf
Minimum	-2,247	-2,377
Maximum	96,661	1,995
Difference	98,908	4,372

In Situ Analysis of Sulphides

These rocks from South Australia and France were dated ⁴⁵ in 2001 using the Rhenium/Osmium dating methods. The rock samples in the second table in the article gave ages ⁴⁶ between -17 and 34 billion years old! With the South Australian rocks, there is a 51,000 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits that many ages are impossibly old or young:

"It is obviously not the case here, given that TMA model ages for some sulphides or samples are unrealistic, giving future ages or ages older than 4.5 Ga." ⁴⁶

"Interstitial sulphides in GRM-2 yield future TRD ages and unrealistic TMA ages, again indicating that the Os isotopic composition is not related to time-integrated in situ Re decay." ⁴⁷

Table 12

Billion Years	Billion Years
-17.4	4.35
-9.5	5.2
-7.06	8.3
-2.35	8.8
-0.3	34

South Australian rocks

Table 13

Iub	10 10
Billion Years	Billion Years
-32	3.11
-2.08	3.93
-1.79	6.7
-1.43	7.4
-1.42	16

French rocks

With the French rocks, ⁴⁸ there is a 48,000 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Southern African Peridotite Xenoliths

These rocks from South Africa were dated ⁴⁹ in 1988 using several dating methods. If we insert the isotopic ratios listed one table ⁵⁰ we find that the Rubidium/Strontium ratios give ages between 83 and between 1,100 million years old. If we insert the Lead/Lead ratios listed in the same table we find the rock is between 4,700 and 5,000 million years old. If we insert the Osmium ratios listed in another table ⁵¹ and use the dating formula shown in Gunter Faure's book ⁵² we find the rock is between -3,300 and 13,500 million years old. There is a **16,000** million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

$$t = \frac{1.04 - (^{187} Os)^{186} Os)}{0.050768}$$

In the above formula, t = billions of years.

Table 14

Dating	Age	Age	Age	Age
Summary	87Rb/86Sr	187Os/186Os	Neodymium	207Pb/206Pb
Maximum	1,100	13,551	1,630	5,064
Minimum	83	-3,309	520	4,700
Difference	1,017	16,860	1,110	364

Xenoliths from Kimberley, South Africa

These rocks from South Africa were dated ⁵³ in 2007 using the Rhenium/Osmium dating method. The rock samples in the article gave ages ⁵⁴ between -117,980 and 143,830 million years old! With the rocks, there is a 261,810 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits that many ages are impossibly old or young:

"The very old Re-Os model age of websterite DJ0217 of 7 Ga testifies to a more complex history for this sample." ⁵⁵

"The olivines from these samples also provide negative Re–Os model ages suggesting recent modification of their Re–Os systematics." ⁵⁶

"On a Re-Os isochron diagram, the whole-rock—olivine tie-line for DJ0259 corresponds to an age of 5.2 Ga. This unrealistic age coupled with the radiogenic Os, but near chondritic Re/Os ratio of the olivine suggests that the olivine in this dunite was either added recently, or interacted extensively with modern mantle melts, for example the host kimberlite." ⁵⁶

Table 15

Mineral	Average	Maximum	Minimum	Difference
Dunite	970	3,250	-3,470	6,720
Dunite	1,918	14,580	-15,020	29,600
Wehrlite	2,375	3,190	900	3,100
Wehrlite	3,096	21,670	-11,150	32,820
Websterite	-19,150	3,050	-117,980	121,030
Websterite	24,503	143,830	450	143,380

Conclusion

Yuri Amelin states in the journal Elements that radiometric dating is extremely accurate:

"However, four 238U/235U-corrected CAI dates reported recently (Amelin et al. 2010; Connelly et al. 2012) show excellent agreement, with a total range for the ages of only 0.2 million years – from 4567.18 \pm 0.50 Ma to 4567.38 \pm 0.31 Ma." ⁵⁷⁻⁵⁹

To come within 0.2 million years out of 4567.18 million years means an accuracy of 99.99562%. Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in radiometric dating is selectively taken to suit and ignores data to the contrary.

References

- 1 <u>http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html</u>
 The age of 10 to 15 billion years for the age of the Universe.
- 2 <u>http://en.wikipedia.org/wiki/Age_of_the_universe</u>
- 3 http://arxiv.org/pdf/1001.4744v1.pdf
 Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
- 4 http://en.wikipedia.org/wiki/Age of the Earth
- 5 http://sp.lyellcollection.org/content/190/1/205
 The age of the Earth, G. Brent Dalrymple
 Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
- 6 The age of the earth, Gérard Manhes Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370–382
- 7 http://arxiv.org/pdf/astro-ph/0506458v1.pdf
 The age of the Galactic disk, By E. F. del Peloso and L. da Silva Astronomy & Astrophysics, Manuscript no. 3307, February 2, 2008

C:\Essays\Geo Dating\Dating\Impossible\Impossible.xlsm

8	Evolution Beneath the Kaapvaal Craton, Chemical Geology, Volume 208, 2004, Pages 89-118
9	Reference 8, pages 101-105
10	Reference 8, pages 107
11	Reference 8, pages 110
12	Central Asian Orogenic Belt, Lithos, Volume 126, 2011, Pages 233-247
13	Reference 12, page 241
14	Reference 12, page 242
15	Reference 12, page 239
16	Reference 12, page 244
17	Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986, Page 266.
18	http://www.sciencedirect.com/science/article/pii/S0024493711002179
19	Norwegian Caledonides: An isotopic investigation, Lithos, Volume 117, 2010, Pages 1-19
20	Reference 19, pages 6, 7
21	Reference 19, page 7
22	Reference 19, page 11
23	Re/Os Isotopes of Sulfides, Lithos, Volume 102, 2008, Pages 43-64
24	Reference 23, pages 46-50
25	Reference 23, page 52
26	Reference 23, page 53
27	Reference 23, page 61
28	Archean Man Shield, West Africa, Precambrian Research, Volume 118, 2002, Pages 267-283
29	Reference 28, pages 273, 274
30	Reference 28, page 277
31	Reference 28, page 276
32	Lithospheric Mantle Evolution, Lithos, Volume 125, 2011, Pages 405-422
33	Reference 32, page 417
34	Reference 32, page 415
35	Upper Crust in North-East Australia, International Journal Earth Science, 2012, Volume 101,

	Pages 1091-1109
36	Reference 35, Pages 1099, 1101
37	Reference 35, Pages 1098
38	The Kaapvaal Cratonic Lithospheric Mantle, Journal Of Petrology, 2007, Volume 48, Number 3, Pages 589-625
39	Reference 38, pages 600-601
40	Reference 38, pages 609
41	Reference 38, pages 612
42	Reference 17, pages 205
43	Reference 17, pages 252
44	Reference 38, pages 610
45	In Situ Analysis of Sulphides, Earth and Planetary Science Letters, 2002, Volume 203, Pages 651-663
46	Reference 45, page 654
47	Reference 45, page 659
48	Reference 45, page 655
49	Southern African Peridotite Xenoliths, Geochimica et Cosmochimica Acta, 1989, Volume 53, Pages 1583-1595
50	Reference 49, page 1587
51	Reference 49, page 1588
52	Reference 17, page 269
53	Xenoliths from Kimberley, South Africa, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 5722-5756
54	Reference 53, page 5737
55	Reference 53, page 5743
56	Reference 53, page 5744
57	Dating the Oldest Rocks in the Solar System, Elements, 2013, Volume 9, Pages 39-44
58	Amelin, Earth and Planetary Science Letters, 2010, Volume 300, Pages 343-350
59	Connelly, Science, 2012, Volume 338, Pages 651-655

www.creation.com