The Uranium 238 Dating Method By Paul Nethercott July 2013

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years.¹ Standard evolutionist publications give the age of the universe as 13.75 Billion years.^{2, 3}

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 <u>billion</u> years." ⁴ "The Solar System, formed between 4.53 and 4.58 billion years ago." ¹ "The age of 4.54 billion years found for the Solar System and Earth." ¹ "A valid age for the Earth of 4.55 billion years." ^{5,6}

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ⁷ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically other dating methods. The U/Th/Pb ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang? Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Rocks Of The Central Wyoming Province

These rock samples were dated in 2005 by scientists from the University of Wyoming. ⁸ If we run the Rubidium/Strontium and Neodymium/Samarium isotope ratios ⁹ from the article through Microsoft Excel and use the formulas listed in Gunter Faure's book ¹⁰ we get the following values:

$$t = \frac{2.303}{(0.693 \div h)} \log \left(\frac{(143Nd/144Nd) - (143Nd/144Nd)_0}{(144Sm/147Nd)} + 1 \right)$$

h = half life, 106 billion years

$$t = \frac{2.303}{(0.693 \div h)} \log \left(\frac{(87Sr/86Sr) - (87Sr/86Sr)_0}{(87Rb/86Sr)} + 1 \right)$$

h = half life, 48.8 billion years

Where t equals the age in years. (87Sr/86Sr) = the current isotopic ratio. $(87Sr/86Sr)_0 =$ the initial isotopic ratio. (87Rb/86Sr) = the current isotopic ratio. The same is true for the formula below

Ages Dating Summary						
Dating	Age	Age	Age	Age	Age	
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	208Pb/232Th	206Pb/238U	
Average	2,863	2,869	5,123	17,899	11,906	
Maximum	2,952	2,954	5,294	38,746	18,985	
Minimum	2,630	2,631	4,662	6,650	7,294	
Std Deviation	38	39	152	9,754	3,298	
Table 1						

The Uranium/Lead dates ¹¹ are up to sixteen billion years older than the Rubidium/Strontium and Neodymium/Samarium dates. The Thorium/Lead dates are up to thirty six billion years older. The so called true age is just a guess.

History Of The Pasamonte Achondrite

According to the article this meteorite specimen was dated in 1977 by scientists from the United States Geological Survey, Colorado and the Department of Chemistry and Geochemistry, Colorado School of Mines.¹² The article states that Rubidium/Strontium dating affirms that this material is 4.5 billion years old.³⁴ If we run the various isotope ratios¹³ from two different tables in the article through Microsoft Excel we get the following values respectively:

<u>U/Th/Pb Age Dating Summary</u>				
Summary	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th
Average	3,088	3,666	4,566	2,263
Maximum	5,694	5,032	4,963	14,800
Minimum	103	865	4,440	-10,700
Difference	5,591	4,167	523	25,500
Table 2				

If we run the 87Rb/86Sr isotope ratios ¹³ from the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary			
Average	4,403		
Maximum	6,674		
Minimum	2,412		
Difference 4,262			
Table 3			

The Thorium/Lead dates are up to twelve billion years older. The so called true age is just a guess.

A Depleted Mantle Source For Kimberlites

According to the article ¹⁴ this specimen [kimberlites from Zaire] was dated in 1984 by scientists from Belgium. According to the article ¹⁵ the age of the samples is 70 million years. If we run the various isotope ratios ¹⁶ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary				
Summary	207Pb/206Pb	206Pb/238U	87Rb/86Sr	147Sm/144Nd
Average	4,977	4,810	86	72
Maximum	5,017	10,870	146	80
Minimum	4,909	1,391	50	63
Difference	108	9,478	196	17
Table 4				

The 207Pb/206Pb maximum age is 34 times older than the 87Rb/86Sr maximum age. The 206Pb/238U maximum age is 74 times older than the 147Sm/144Nd maximum age. There is a 10.8 billion year difference between the oldest and youngest age attained.

Pb, Nd And Sr Isotopic Geochemistry

According to the article ¹⁷ this specimen [Bellsbank kimberlite, South Africa] was dated in 1991 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article ¹⁸ the age of the samples is just 1 million years. If we run the various isotope ratios ¹⁹ from two different tables in the article through Microsoft Excel we get the following values respectively:

Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	5,057	5,092	10,182	-1,502
Maximum	5,120	8,584	17,171	0
Minimum	5,002	0	0	-3,593
Difference	118	8,584	17,171	3,593
Table 5				

In tables 37 to 40 we can see some of the astounding spread of dates [million of years]. The oldest date is over 17 billion years old. The youngest is less than negative 3.5 billion years. The difference between the two is over 20 billion years. According to the article the true age of the rock is just one million years old!

208PD/2521n, Maximum Ages				
Age	Age	Age	Age	
17,171	13,322	9,737	7,968	
15,343	13,202	9,707	7,830	
15,299	13,001	9,049	7,250	
15,136	11,119	8,420	6,972	
15,054	10,873	8,419	6,628	
13,476	10,758	8,368	6,577	
	T-1-1	. (

208Pb/232Th, Maximum Ages

Table	6

206Pb/238U, Maximum Ages

Age	Age	Age		
8,584	6,656	5,576		
7,975	6,654	5,520		
7,314	6,518	5,285		
7,184	6,448	5,159		
6,861	5,758	5,099		
Table 7				

Pb 207/206, Maximum Ages

Age	Age	Age	Age	
5,120	5,067	5,060	5,049	
5,109	5,066	5,059	5,045	
5,097	5,066	5,051	5,044	
5,077	5,065	5,050	5,044	
5,067	5,062	5,050	5,033	
5,067	5,060	5,050	5,022	
Table 8				

0/1					
Age	Age	Age	Age		
-3,593	-2,981	-1,917	-1,323		
-3,231	-2,725	-1,611	-1,245		
-3,089	-2,050	-1,499	-1,229		
-3,067	-1,926	-1,370	-1,194		
	Tab	le 9	•		

Sr, Nd, And Pb Isotopes

According to the article ²⁰ this specimen [eastern China] was dated in 1992 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article: "Observed high Th/U, Rb/Sr, 87Sr/86 Sr and Delta 208, low Sm/Nd ratios, and a large negative Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga, support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component." ²⁰ If we run the various isotope ratios ²¹ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary				
Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb	
Summaries	Age	Age	Age	
Average	14,198	7,366	5,014	
Maximum	94,396	22,201	5,077	
Minimum	79	1,117	4,945	
Difference	94,317	21,083	131	
Table 10				

If the true age is 2.9 billion years why so much discordance? In tables 41 to 43 we can see some of the astounding spread of dates [million of years]. The oldest date is over 94 billion years old. The youngest is 79 million years. The difference between the two is over 94 billion years. The oldest date is 1,194 times older than the youngest. According to the article the true age of the rock is 2.9 billion years old!

2001	2001 0/252111, Maximum Ages							
Age	Age	Age	Age					
94,396	39,267	10,595	8,171					
90,683	26,266	10,284	7,789					
74,639	18,334	9,328	7,638					
58,153	16,357	8,821	7,375					
55,324	14,250	8,771	7,317					
45,242	11,215	8,403	5,759					
	Tab	le 11						

208Pb/232Th, Maximum Ages

Age	Age	Age	Age
22,201	9,878	7,348	5,746
21,813	9,656	7,335	5,700
19,320	9,054	7,249	5,218
16,656	8,242	7,202	5,201
16,200	8,044	7,019	5,163
14,748	7,996	6,923	5,159
13,607	7,590	6,848	5,099
11,256	7,422	6,292	4,812
	Tabl	e 12	

206Pb/238U, Maximum Ages

Evolution Of Reunion Hotspot Mantle According to the article ²² this specimen [Reunion and Mauritius Islands] was dated in 1995 by scientists from the University of Hawaii. According to the article: "Whole-rock powder obtained from P. Krishnamurthy. (87Sr/86 Sr), and em(T) are age-corrected values; T = 66 Ma for the drill hole lavas." ²³ If we run the various isotope ratios ²⁴ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary							
Table	232Th/208Pb	206Pb/238U	207Pb/206Pb				
Summaries	Age	Age	Age				
Average	8,079	4,449	4,976				
Maximum	13,287	6,285	5,016				
Minimum	5,641	3,010	4,953				
Difference	7,646	3,276	63				

Table 13

5 7,363 9 7,362	6,540 6,479
9 7,362	6,479
1 7 000	
1 /,080	6,323
7 7,017	5,660
6 6,679	5,641
	7 7,017 6 6,679

200DL /222TL M.----

206Db/22811 Marin

2001	200PD/238U, Maximum Ages						
Age	Age	Age	Age				
6,285	4,903	4,141	3,875				
6,165	4,633	4,133	3,647				
5,767	4,342	4,011	3,548				
5,553	4,258	4,001	3,369				
5,152	4,220	3,973	3,010				
·	Tab	le 15					

According to dating charts in the article, the true age is just 66 million years old!²⁵

An Extremely Low U/Pb Source

According to the article ²⁶ this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The Pb-Pb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ± 28 Ma, which is similar to the U-Pb (3850 ± 150 Ma) and Th-Pb (3820 ± 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ± 57 Ma and an initial 143Nd/I44Nd value of 0.50797 ± 10 . The Rb-Sr data yield an internal isochron age of 3840 ± 32 Ma."²⁶

<u>Rb/Sr Age Dating Summary</u>				
Average	3,619			
Maximum	5,385			
Minimum	721			
Difference	4,664			
Table 16				

Uranium Age Dating Summary								
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U				
Summaries	Age	Age	Age	Age				
Average	4,673	8,035	10,148	4,546				
Maximum	5,018	56,923	65,286	8,128				
Minimum	3,961	1,477	2,542	2,784				
Difference	1,057	55,445	62,744	5,344				
	Table 17							

The article claims that the Rb/Sr age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ²⁷ so stupid? Or are they right and the Rb/Sr is wrong?

208Pb/232Th, Maximum Ages							
Age	Age	Age	Age				
65,286	14,430	9,094	5,401				
33,898	14,410	6,520	5,396				
25,013	13,107	6,166	5,365				
22,178	12,738	6,121	5,098				
21,204	11,641	5,671	5,035				
17,611	11,174	5,408	4,678				
	Table	18					

206Pb/238U, Maximum Ages

Age	Age	Age	Age
56,923	10,895	6,764	5,777
27,313	10,278	6,670	5,625
17,873	9,653	6,449	5,602
13,680	8,009	6,436	5,278
13,623	7,395	6,070	5,147
	Table	19	•

According to the article ²⁸ The Origin Of Geochemical Diversity this specimen [lunar basalt] was dated in 2007 by scientists from New Mexico University. According to Rb/Sr isochron diagram the age of the material is 3.678 billion years.²⁹ If we run the

various isotope	ratios 30	from	two	different	tables	in	the	article	through	Isoplot	we	get	the	following	values
respectively:															

Age Dating Summary								
Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr					
Summaries	Age	Age	Age					
Average	4,635	6,565	4,672					
Maximum	5,111	18,213	7,094					
Minimum	4,028	3,706	3,476					
Difference	1,082	14,506	3,618					

Table 20

The dating methods all disagree with each other. There is a wide spread of dates which are just random.

According to the article ³¹ this specimen from southern Portugal was dated in 1997 by scientists from France. According to the article Argon and Rubidium dating defined the so called true ages as: "The age of the intrusion and crystallization of the alkaline rocks of the Serra de Monchique is 72 Ma, based on Rb/Sr and K/Ar dating." ³² If we run the various isotope ratios ³³ from a table in the article through Isoplot we get the following values respectively:

Age Dating Summary								
Table	207Pb/206Pb	208Pb/232Th	206Pb/238U	87Rb/86Sr				
Summaries	Age	Age	Age	Age				
Average	4,920	6,126	4,539	-62				
Maximum	4,949	10,084	7,723	-50				
Minimum	4,894	2,616	2,306	-75				
Difference	55	7,467	5,417	25				
Table 21								

The date of 72 million years is just a guess. The Thorium/Lead method gives dates 140 times older. The Uranium/Lead methods give dates 107 times older. Below we can see the maximum ages [million years] calculated form isotope ratios. Compare these with the so called true age!

Maximum Ages				
208Pb/232Th	206Pb/238U			
10,084	7,723			
9,320	7,060			
8,101	6,507			
7,502	6,387			
7,080	6,206			
6,891	5,143			
6,655	4,734			
6,313	4,186			
5,830	3,768			
5,755	3,761			
5,029	3,487			
Tabl	e 22			

Garnet Granulite Xenoliths

According to the article ³⁴ this specimen from the northern Baltic shield was dated in 2001 by scientists from England, USA and Russia. According to the article Argon dating defined the so called true ages as 400 to 2200 million years. ³⁵ If we run the various isotope ratios ³⁶ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary				
Table	206Pb/238U	207Pb/206Pb		
Summaries	Age	Age		
Average	17,002	5,046		
Maximum	40,059	5,295		
Minimum	1,608	3,908		
Difference	38,452	1,387		
Table 23				

Below are the maximum ages calculated from isotope ratios in tables 4 and 5 in the article:

<u>206Pb/238U, Maximum Ages</u>						
206Pb/238U	206Pb/238U	206Pb/238U	206Pb/238U			
Age	Age	Age	Age			
40,059	28,118	21,092	13,724			
35,742	27,127	16,026	13,404			
34,459	25,884	14,371	12,747			
33,978	21,209	14,272	10,956			
	Tab	la 24				

Table

<u>200F D</u>	2380, Maximu	n Ages
206Pb/238U	206Pb/238U	206Pb/238U
Age	Age	Age
20,648	13,724	10,956
17,527	13,404	10,049
16,336	12,622	6,792
15,626	12,165	6,265
15,018	11,432	5,865
	Table 25	

If we run more ratios form and online supplement ³⁷ we get ages uniformly 5 billion years old. Compare these with the so called true age!

The Isotope And Trace Element Budget According to the article ³⁸ this specimen from the Devil River Arc System, New Zealand was dated in 2000 by scientists from Germany. According to the article, the so called true ages is Cambrian. ¹⁰² If we run the various isotope ratios ³⁹ from table 4 in the article through Isoplot we get the following values respectively:

	inge zuning i	<i>o m</i>	
Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	4,970	19,143	500
Maximum	4,986	21,761	501
Minimum	4,932	15,150	495
Difference	54	6,611	6
	Table	26	

Age Dating Summary

The Lead/Lead dates are ten times too old and the Uranium/Lead dates are 40 times too old!

Petrogenesis And Origins Of Mid-Cretaceous

According to the article ⁴⁰ this specimen from the Intraplate Volcanism in Marlborough, New Zealand was dated in 2010 by scientists from New Zealand. According to the essay "the intraplate basalts in New Zealand that have been erupted intermittently over the last c. 100 Myr." ⁴¹ Various tables ⁴² in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 10 billion year range. None of the Lead based dating methods even come vaguely close to a Cretaceous age.

Age Dating Summary						
Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U	
Summaries	Age	Age	Age	Age	Age	
Average	4,876	4,416	59	6,333	3,515	
Maximum	4,945	5,159	85	10,716	5,717	
Minimum	4,836	4,088	15	4,785	2,712	
Difference	109	1,071	70	5,931	3,005	

Table 27

Petrogenesis Of The Flood Basalts

According to the article ⁴³ this basalt form the Northern Kerguelen Archipelago was dated in 1998 by scientists from the Massachusetts Institute Of Technology, University of Brussels, Belgium and the San Diego State University. According to the essay: "The dominance of this isotopic signature in archipelago lavas for 30 my and its presence in ~40 Ma gabbros is consistent with the previous interpretation that these are isotopic characteristics of the Kerguelen Plume." ⁴³ Various tables ⁴⁴ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over a 44 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary					
Mt Rabouillere	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th
Average	21	5,008	4,903	4,975	6,142
Maximum	30	5,019	5,355	5,100	7,788
Minimum	-7	5,000	4,305	4,793	2,799
Difference	38	20	1,050	307	4,989
			•0	•	

Mount Bureau	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th
Average	27	5,006	5,924	5,161	8,410
Maximum	30	5,020	23,366	8,496	44,378
Minimum	24	4,994	3,335	4,454	2,650
Difference	6	26	20,031	4,042	41,728
	•				

Age Dating Summary

<u>Table 29</u>

Nature Of The Source Regions

According to the article ⁴⁵ this lava from southern Tibet was dated in 2004 by scientists from the Open University in Milton Keynes, the University of Bristol and Cardiff University. According to the essay: "Most samples are Miocene in age, ranging from 10 to 25Ma in the south and 19Ma to the present day in northern Tibet." ⁴⁶ Various tables ⁴⁷ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over an 88 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

	Age	Dating Summary					
North Tibet	208Pb/232Th	207Pb/235U	207Pb/206Pb	206Pb/238U			
Summary	Million Years	Million Years	Million Years	Million Years			
	11,420	5,136	4,980	7,783			
87Rb/86Sr	11,350	5,138	4,980	8,023			
Model Age	13,475	5,135	4,987	8,305			
13 Million Years	11,504	5,140	4,989	7,349			
	81,614	7,470	4,987	33,751			
	88,294	7,471	4,991	33,742			
	Table 30						

Age Dating Summary						
South Tibet	208Pb/232Th	207Pb/235U	207Pb/206Pb	206Pb/238U		
Summary	Million Years	Million Years	Million Years	Million Years		
	11,102	313	4,982	6,331		
	6,092	946	4,919	5,799		
87Rb/86Sr	9,265	266	4,980	6,682		
Model Age	4,826	238	4,992	4,086		
13 Million Years	8,205	294	4,980	5,567		
	25,015	447	4,994	13,328		
	33,191	482	4,992	15,053		
Table 31						

Generation Of Palaeocene Adakitic Andesites

According to the article ⁴⁸ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Palaeocene (c. 55-58Ma) adakitic andesites from the Yanji area." ⁴⁸ Numerous table and charts affirm this as the true age. ⁴⁹ A table ⁵⁰ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 10 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

			Summer J		
Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U	207Pb/235U
Summary	Age	Age	Age	Age	Age
Average	51	5,022	8,941	8,754	5,908
Maximum	66	5,024	10,518	9,669	6,052
Minimum	40	5,020	7,800	7,403	5,641
Difference	26	3	2,718	2,266	411
		Table	e 32		

Age Dating Summary

Evidence For A Widespread Tethyan

According to the article ⁵¹ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Here, we report age-corrected Nd–Pb–Sr isotope data for 100–350 Ma basalt, diabase, and gabbro from widely separated Tethyan locations in Tibet, Iran, Albania, the eastern Himalayan syntaxis, and the seafloor off NW Australia (Fig. 1)." ⁵² The author concludes that the rocks are from the Cretaceous and Jurassic time periods: "We collected Early Jurassic to Early Cretaceous Neotethyan magmatic rocks in 1998 from outcrops along 1300 km of the Indus–Yarlung suture zone." ⁵³ Several tables ⁵⁴ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 60 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary								
Dating	ting 87Rb/86Sr 207Pb/206Pb 208Pb/232Th 206Pb/2							
Summary	Age	Age	Age	Age				
Average	168	4,999	22,356	7,014				
Maximum	1,739	5,236	58,796	15,747				
Minimum	0	4,982	10,699	5,042				
Difference	1,739	254	48,096	10,705				
		T-11. 22						

Table 33

208Pb/232Th, Maximum Ages

208Pb/232Th	208Pb/232Th	208Pb/232Th	208Pb/232Th
Age	Age	Age	Age
58,796	29,705	18,607	11,427
54,206	27,710	18,121	11,377
48,252	27,422	17,797	11,366
47,976	26,674	17,787	11,241
46,117	26,369	17,591	10,718
42,203	25,972	17,536	10,699
42,192	25,590	17,054	10,699
41,604	25,096	16,053	10,300
41,343	24,010	15,299	9,357
41,231	22,718	14,340	8,632
39,637	22,307	13,845	8,486
38,125	22,228	13,772	8,057
37,115	21,827	13,652	6,497
35,012	21,560	13,404	5,573
33,584	19,910	13,403	5,425

31,556	19,594	13,006	4,869		
31,286	19,148	12,171			
30,740	18,765	11,540			
T-11-24					

Table 34

206Pb/238U	206Pb/238U	206Pb/238U	206Pb/238U	206Pb/238U
Age	Age	Age	Age	Age
15,747	11,309	8,770	6,602	5,724
15,067	11,248	8,508	6,589	5,720
14,363	10,360	8,315	6,421	5,601
13,580	9,643	8,314	6,398	5,599
13,204	9,427	8,072	6,369	5,573
12,780	9,300	8,024	6,357	5,515
11,757	9,123	7,604	6,219	5,462
11,659	9,014	7,504	5,863	5,311
11,537	8,996	7,056	5,861	5,286
11,313	8,954	7,002	5,807	5,120
	•	Table 35		•

206Pb/238U, Maximum Ages

Origin Of The Indian Ocean-Type Isotopic Signature

According to the article ⁵⁵ this rock formation the Philippine Sea plate was dated in 1998 by scientists from Department of Geology, Florida International University, Miami. According to the essay the true age is: "Spreading centers in three basins, the West Philippine Basin (37-60 Ma), the Parece Vela Basin (18-31 Ma), and the Shikoku Basin (17-25 Ma) are extinct, and one, the Mariana Trough (0-6 Ma), is active (Figure 1)." ⁵⁵Numerous table and charts affirm this as the true age. ⁵⁶ Two tables ⁵⁷ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.

Age Dating Summary					
Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	206Pb/238U	208Pb/232Th
Average	42	41	4,960	4,260	8,373
Maximum	55	54	4,989	7,093	13,430
Minimum	19	20	4,921	1,904	3,065
Difference	37	33	68	5,188	10,365

Table 36

U-Th-Pb Dating Of Secondary Minerals

According to the article ⁵⁸ this rock formation Yucca Mountain, Nevada was dated in 2008 by scientists from United States Geological Survey, Geological Survey of Canada, and the Australian National University. According to the essay the true age is unknown. ⁵⁹ Other authors have affirmed the same problem. ⁶⁰ Two tables ⁶¹ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 353 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 350,000 times older than the youngest date.

Age Dating Summary					
Dating	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age	
Average	3,459	4,891	9,984	12	
Maximum	8,126	31,193	352,962	13	
Minimum	-445	1	2	11	
Difference	8,571	31,192	352,960	2	
		Table 37			

Age Dating	Summary
------------	----------------

Another table ⁶¹ in the essay has a list of calculated dates. As we can see below they are all at radical disagreement with each other. There is a spread of dates of 82 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 82,000 times older than the youngest date.

Age Dating Summary					
Dating	206Pb/238U	207Pb/235U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age	
Average	1,540	46	7,687	12	
Maximum	20,209	486	82,030	13	
Minimum	1	0	3	11	
Difference	20,208	486	82,027	2	
Table 38					

Conclusion

Evolutionists **Schmitz and Bowring** claim that Uranium/Lead dating is 99% accurate. ⁶² Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data used in this dating method is selectively taken to suit and ignores data to the contrary.

References

- 1 <u>http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html</u> The age of 10 to 15 billion years for the age of the Universe.
- 2 <u>http://en.wikipedia.org/wiki/Age_of_the_universe</u>
- 3 <u>http://arxiv.org/pdf/1001.4744v1.pdf</u> Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
- 4 <u>http://en.wikipedia.org/wiki/Age_of_the_Earth</u>
- <u>http://sp.lyellcollection.org/content/190/1/205</u>
 The age of the Earth, G. Brent Dalrymple
 Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
- 6 The age of the earth, Gérard Manhes Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370–382

7 <u>http://www.bgc.org/isoplot_etc/isoplot.html</u>

Acrobat Files And Microsoft Excel Files

C:\Essays\Geo Dating\Rubidium\Rubidium Index.xlsm

- 8 Rocks of the Central Wyoming Province, Canadian Journal Of Earth Science, 2006, Volume 43, Pages 1419
- 9 Reference 27, Page 1436-1437
- 10 Principles of Isotopic Geology, Gunter Faure, John Wiley Publishers. New York, 1986, Pages 120, 205
- 11 Reference 27, Page 1439
- 12 History Of The Pasamonte Achondrite, Earth and Planetary Science Letters, Volume 37, 1977, Pages 1
- 13 Reference 33, Pages 3, 9
- 14 A Depleted Mantle Source For Kimberlites, Earth and Planetary Science Letters, Volume 73, 1985, Pages 269
- 15 Reference 47, Pages 270
- 16 Reference 47, Pages 271, 273
- 17 Pb, Nd and Sr isotopic geochemistry, Earth and Planetary Science Letters, Volume 105, 1991, Pages 149
- 18 Reference 66, Pages 154, 160
- **19** Reference 66, Pages 156, 157
- 20 Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113, 1992, Pages 107
- 21 Reference 68, Pages 110
- 22 Evolution of Reunion Hotspot Mantle, Earth and Planetary Science Letters, Volume 134, 1995, Pages 169-185
- 23 Reference 72, Pages 173
- 24 Reference 72, Pages 174
- 25 Reference 72, Pages 180
- 26 An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702
- 27 Reference 75, Pages 4690, 4691
- 28 The Origin of Geochemical Diversity, Geochimica et Cosmochimica Acta, Volume 71, 2007, Pages 3656
- 29 Reference 86, Pages 3661

- 30 Reference 86, Pages 3660
- 31 Continental Lithospheric Contribution, Journal Of Petrology, 1997, Volume 38, Number 1, Pages 115
- 32 Reference 95, Pages 119
- 33 Reference 95, Pages 124
- 34 Garnet Granulite Xenoliths, Journal Of Petrology, 2001, Volume 42, Number 4, Pages 731
- 35 Reference 98, Pages 742, 743
- 36 Reference 98, Pages 737-740
- 37 http://petrology.oxfordjournals.org/content/suppl/2001/04/27/42.4.731.DC1/ege033SUPPLEM.csv
- 38 The Isotope and Trace Element Budget, Journal Of Petrology, 2000, Volume 41, Number 6, Pages 759
- **39** Reference 102, Pages 772-774
- 40 Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51, Number 10, Pages 2003-2045
- 41 Reference 110, Pages 2038
- 42 Reference 110, Pages 2024-2026
- 43 Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711–748
- 44 Reference 119, Pages 729, 730
- 45 Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 555
- 46 Reference 121, Pages 556
- 47 Reference 121, Pages 566, 575, 576
- 48 Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 661
- 49 Reference 124, Pages 676-678
- 50 Reference 124, Pages 684
- 51 Evidence for a Widespread Tethyan, Journal Of Petrology, 2005, Volume 46, Number 4, Pages 829-858
- 52 Reference 127, Pages 831
- 53 Reference 127, Pages 840
- 54 Reference 127, Pages 832-837
- 55 Origin of the Indian Ocean-type isotopic signature, Journal Of Geophysical Research, 1998, Volume 103, Number B9, Pages 20,963

- 56 Reference 134, Pages 20965, 20969
- 57 Reference 134, Pages 20968, 20969
- 58 U-Th-Pb Dating Of Secondary Minerals, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 2067
- 59 Reference 137, Pages 2067, 2068
- 60 Reference 137, Pages 2072-2073, 2074
- 61 Reference 137, Pages 2080, 2081
- 62 Schmitz MD, Bowring SA. An assessment of high-precision U-Pb geochronology. Geochimica et Cosmochimica Acta, 2001, Volume 65, Pages 2571-2587

www.creation.com