Rocks Older Than The Galaxy By Paul Nethercott May 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years.¹ Standard evolutionist publications give the age of the universe as 13.75 Billion years.^{2,3}

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ⁴ "The Solar System, formed between 4.53 and 4.58 billion years ago."¹ "The age of 4.54 billion years found for the Solar System and Earth."¹ "A valid age for the Earth of 4.55 billion years."^{5,6}

Evolutionists give the age of the galaxy as "11 to 13 billion years for the age of the Milky Way Galaxy." ^{1,7} Let us remember this as we look at the following dating as given in secular science journals.

Age Of Uranium Mineralization

These rocks were dated ⁸ in from the Gas Hills in Wyoming were dated in 1979 using the Uranium-Lead method. The rock sample GH-B1 was dated giving ages ⁹ between -1,240 and 12,000 million years old!

Table 1		
Table 3	Table 4	Table 5
Million Years	Million Years	Million Years
11,780	7,232	5,060
-190	4,654	4,830
-200	4,355	-34
-220	3,540	-160
-310	-290	-240
-340	-340	-260
-420	-550	-500
-530		-610
-530		-650
-1,240		

"These systematics are similar to those observed by Ludwig for the Shirley Basin uranium ores, for which preferential loss of radioactive daughters in the U decay chain was shown to be the dominant cause of apparent-age discordance."

"The trends of apparent age and discordance of the total ore, uraninite-coffinite, and pyrite analyses for the Gas Hills and Crooks Gap ores are very similar to those reported for the Shirley Basin uranium ores." ¹¹

Another group of rock samples were dated ¹² giving absurd values. Many had negative ages! Some were older than the Solar System. How can Earth rocks be older than the Solar System?

Table 2		
Million Years	Million Years	
7,323	-340	
4,830	-500	
5,060	-550	
-240	-610	
-290	-650	

Table 3

Sample	Maximum Age	Minimum Age	Difference	Difference
Name	Million Years	Million Years	Million Years	Percentage
CG-A4	7,323	-340	7,663	-2,253%
CG-A5	4,654	-550	5,204	-946%
CG-A1	4,355	-290	4,645	-1,601%

A rock sample number GH-A6 was dated ¹³ as being between 5,870 million and negative 650 million years old. Looking at positive dates above zero and ignoring negative ages what do we find? The oldest is 5,870 million years old and the youngest ¹³ is 8 million years old. One is 733 times older than the other. Using a table ¹⁴ in the essay which has the ²⁰⁶Pb/²⁰⁴Pb and ²⁰⁷Pb/²⁰⁴Pb we can easily work out the ²⁰⁷Pb/²⁰⁶Pb ratios in the sample.

<u>Table 4</u>		
Sample	207Pb/206Pb	207Pb/206Pb
Number	Ratio	Million Years
GH-B3	0.462	4,123
GH-B3	0.480	4,181
GH-B6	0.316	3,549
GH-D2407	0.332	3,628
GH-D2407	0.413	3,958
GH-D2407	0.407	3,936
CG-A6	0.351	3,712
CG-A6	0.363	3,763

If we run the ²⁰⁷Pb/²⁰⁶Pb ratios through Isoplot ¹⁵ sample is over 3,500 million years old. The dates are not put beside the ratios in the original essay. The author states in the opening paragraph of his essay that the rock formation is only "inclusion of all samples increases the observed range to 12 to 41 million years." ¹⁶ In the first paragraph he admits that the isotopic composition has been contaminated over time producing anomalous dates. His choice of this narrow range is purely guesswork. Looking at all the dates it is just random whichever you pick.

African Peridotite Xenoliths These kimberlites of southern Africa were dated in 1989 using Rhenium-Osmium dating method. ¹⁷ Some of the ages ¹⁸ are older than the Solar System and galaxy.

Table 5	
5.6	Billion Years Old
12.6	Billion Years Old

If we insert the Osmium ratios listed in article ¹⁹ into Microsoft Excel use the dating formula listed in Gunter Faure's book 20 we get the dates listed in table 6.

 $t = \frac{1.04 - ({}^{187}Os \div {}^{186}Os)}{10^9} \times 10^9$ 0.050768

Table 6		
Average	889	
Maximum	2,659	
Minimum	-3,309	
Osmium/Osmium dating		

"TMA varies from 0.11 to 5.7 Ga with three samples having Re/Os that is too high to explain their measured 1870s/1860s." ²¹

The Siberian Craton Xenoliths from kimberlites intruding ²² the Siberian craton were dated in 1995 using the Re-Os, Sm-Nd, and Rb-Sr dating methods. The results in Table 5 were acquired using Rubidium-Strontium ²³ isotope dating as being between 5 and 13 billion years old. The dates in Table 6 were obtained using Rhenium-Osmium²⁴ dating method.

"If Re/Os model ages are calculated using the conventional model age approach, i.e., using the measured Re/OS and osmium isotope composition in comparison to some model for bulk-Earth osmium isotope evolution, several peridotites yield negative ages, or ages that are considerably older than the Earth"²⁵

Table 7	
5.45	Billion Years Old
6.24	Billion Years Old
12.71	Billion Years Old

Table 8		
5.5	Billion Years Old	
11.0	Billion Years Old	
6.9	Billion Years Old	
6.6	Billion Years Old	

Table 9	
Average	-144,339
Maximum	2,777
Minimum	-1,584,857
0 1 10	

Osmium/Osmium Ratio Dating

History Of The Acapulco Meteorite

This well known meteorite was dated in 1997 by scientists²⁶ from France and Germany. According to the dates in Table 7 given ²⁷ below, the meteorite is older than the galaxy. Even if we take into account the given uncertainty levels listed is the essay, ²⁶ the rocks could still be 8.6 billion years old.

Maximum Age	11,421	Million Years
Minimum Age	3,481	Million Years
Average Age	4,964	Million Years
Age Difference	7,940	Million Years
Difference	328%	Percent
Standard Deviation	1,723	Million Years

Tabla	10
Lanc	10

Potassium/Argon Dating of Iron Meteorites

The Weekeroo Station iron meteorite was dated ²⁸ in 1967 using the Potassium-Argon dating method. The author of the article begins with the following remarks:

"The formation or solidification ages of iron meteorites have never been well determined. The most direct method seems to be that of Stoenner and Zahringer, who measured the potassium and argon contents by neutron-activation analysis. Their data, however, indicated ages of from about 7 to 10 billion years, whereas the age of the solar system is generally well accepted at about 4.7 billion years. Fisher later confirmed these data, but concluded that they were evidence of an unexplained potassium: argon anomaly rather than that they indicated true ages. From Muller and Zahringer's more recent data they conclude that a Potassium/Argon age of about 6.3 billion years can be assigned to many iron meteorites." ²⁹

The author of the article then concludes with the following remarks:

"The ages found by us are typical of the great ages found for most iron meteorites. From these, in conjunction with the Strontium/Rubidium data of Wasserburg on silicate inclusions in this meteorite, we conclude that the Potassium: Argon dating technique as applied to iron meteorites gives unreliable results. One may derive ad hoc possible explanations of the discord between the silicate and iron-phase ages, such as shock emplacement of these inclusions within the metal matrix without disturbing the potassium: argon ratios in the metal, but we feel that such mechanisms are unlikely." ³⁰

The essay lists a number of dates in the opening paragraph. The last four in table below are taken from Table 1 in the original essay.

<u>Table 11</u>		
Meteorite Sample	Billion Years	
Stoenner and Zahringer	10.0	
Stoenner and Zahringer	7.0	
Muller and Zahringer's	6.3	
Wasserburg, Burnett	4.7	
K-1	8.5	
К-2	9.3	
B-1	6.5	
G-1	10.4	

Stabilisation of Archaean Lithosphere

The Rhenium-Osmium isotope method was used ³¹ to date these rocks in 1995. The data ³² in the table below give absurd ages:

<u>Table 12</u>		
Sample Name	Billion Years	
PHN-2600	8.5	
F-865	10.2	
PHN-2825	15.6	
PHN-5239	11.1	

The author tries to explain such dating errors: "For example, several of the peridotite Re/Os model ages calculated using measured 187Re/188Os (TM, in Table 2) either give geologically unreasonable ages or do not intersect the Bulk Earth evolution line at all. Walker reasoned that the highly refractory compositions of Kaapvaal peridotites could have led to complete removal of Re during formation." ³³

Pb Isotopic age of the Allende Chondrules

Professor Yuri Amelin from The Australian National University did the research in 2007. ³⁴ More than ten dates are older than the age of the Solar System. One is as old as the Galaxy. ³⁵

Table 13			
Million Years	Million Years		
10,066	5,396		
6,945	5,345		
5,956	5,336		
5,604	5,180		
5,526	5,147		
5,462	4,950		

If we run some of the isotopic ratios listed in the online supplement 36 through Isoplot we get the following dates:

Table 14			
238U/ 206Pb	207Pb/ 235U	208Pb/232Th	
10,066	5,731	5,947	
6,945	5,202	5,920	
5,956	4,956	5,860	
5,604	4,864	5,735	
5,526	4,832	5,636	
5,462	4,826	5,335	
5,396	4,807	5,265	

Rhenium-187/Osmium-187 In Iron Meteorites

The ¹⁸⁷Rhenium/¹⁸⁷Osmium method and Potassium-Argon method were used to date these meteorite ³⁷ fragments in 1997. Four of the dates were older than the Solar System and two were older than the Galaxy. ³⁸

Table 15		
Canyon Diablo Meteorite	Billion Years	
Leach Acetone	5.73	
Leach H,O	8.31	
Troilite dissolved	10.43	
Metal 1	13.7	

Ar-39/Ar-40 Dating of Mesosiderites Donald Bogard from the Johnson Space Center in Houston, Texas performed this dating ³⁶ in 1990 using the Argon dating method. The table below is a summary from the appendix ³⁷ in the original essay. Three dates are as old or older than the Galaxy. Eleven are older than the Solar System.

Table 16				
Meteorite	Maximum Age	Minimum Age	Age Difference	
Name	Billion Years	Billion Years	Billion Years	
1. Bondoc	4.02	3.20	0.82	
2. Emery	9.08	3.31	5.77	
3. Estherville	13.96	3.18	10.78	
4. Hainholz	5.48	1.55	3.93	
5. Lowicz	9.93	2.92	7.01	
6. Morristown	7.92	3.60	4.32	
7. Mount Padbury	5.52	3.49	2.03	
8. Patwar Basalt	6.14	1.80	4.34	
9. Patwar Gabbro	8.43	2.67	5.76	
10. QUE-86900	10.92	3.24	7.68	
11. Simondium	9.17	3.27	5.90	
12. Veramin	13.13	2.71	10.42	

<u>40Ar-39Ar Chronology</u> Ekaterina V. Korochantseva from Heidelberg, Germany did this dating in 2009. ⁴¹ Below is a mathematical summary of the appendix ⁴² given in the original magazine article.

Table 17				
Sample Name	Maximum Age	Minimum Age	Average Age	Age Difference
Table A01. Dhofar 019 whole rock	11,679	737	2,883	10,942
Table A02. Dhofar 019 maskelynite	10,521	818	2,674	9,703
Table A03. Dhofar 019 pyroxene	10,730	804	3,694	9,926
Table A04. Dhofar 019 olivine	10,487	1,778	4,549	8,709
Table A05. Dhofar 019 opaque	14,917	4,420	8,453	10,497
Table A06. SaU 005 whole rock	7,184	568	1,653	6,616
Table A07. SaU 005 glass	6,235	3,247	4,242	2,988
Table A08. SaU 005 maskelynite	7,432	1,344	3,899	6,088
<u>Table A10. SaU 005 olivine</u>	13,979	3,839	6,559	10,140
Table A11. Shergotty whole rock	8,542	1,112	2,995	7,430
Table A15. Zagami whole rock	6,064	94	2,276	5,970
Table A16. Zagami maskelynite	5,733	238	1,202	5,495
Table A18. Zagami opaque	7,707	290	1,525	7,417
Table A9. SaU 005 pyroxene	12,845	1,354	4,763	11,491

(Ages in million so years)

In Table 14 we can see below that 44 dates are older than the age of the Solar System and nine are over ten billion years.

Table 18			
Sample Name	Million Years	Sample Name	Million Years
Table A05. Dhofar 019	14,917	Table A02. Dhofar 019	7,233
Table A09. SaU 005	13,979	Table A06. SaU 005	7,184
Table A18. Zagami	12,845	Table A02. Dhofar 019	7,168
Table A01. Dhofar 019	11,679	Table A03. Dhofar 019	6,857
Table A03. Dhofar 019	10,730	Table A09. SaU 005	6,680
Table A02. Dhofar 019	10,521	Table A05. Dhofar 019	6,482
Table A04. Dhofar 019	10,487	Table A04. Dhofar 019	6,451
Table A02. Dhofar 019	10,322	Table A07. SaU 005	6,235
Table A03. Dhofar 019	10,142	Table A07. SaU 005	6,192
Table A05. Dhofar 019	9,669	Table A14. Shergotty	6,064
Table A05. Dhofar 019	9,613	Table A09. SaU 005	5,874
Table A01. Dhofar 019	9,260	Table A04. Dhofar 019	5,771
Table A05. Dhofar 019	9,148	Table A07. SaU 005	5,745
Table A04. Dhofar 019	9,111	Table A15. Zagami	5,733
Table A10. SaU 005	8,542	Table A03. Dhofar 019	5,693
Table A01. Dhofar 019	8,507	Table A08. SaU 005	5,608
Table A09. SaU 005	8,323	Table A07. SaU 005	5,598
Table A03. Dhofar 019	8,197	Table A08. SaU 005	5,575
Table A05. Dhofar 019	7,987	Table A07. SaU 005	5,414
Table A17. Zagami	7,707	Table A18. Zagami	5,403
Table A04. Dhofar 019	7,610	Table A05. Dhofar 019	5,391
Table A08. SaU 005	7,432	Table A07. SaU 005	5,389

The author explains the radically absurd ages as contamination: "The temperature extractions above 1380 °C display apparent ages exceeding the age of the solar system that is indicative of the presence of excess argon." ⁴³

Shocked Meteorites: Argon-40/Argon-39 Joachim Kunz⁴⁴ from the Max Plank Institute in Heidelberg, Germany did this dating in 2009 using the Argon-40/Argon-39 dating method. If we look at the appendix⁴⁵ at the end of his article we find many dates older than the Solar Stem and Galaxy.

Sample Name	Million Years
F. Yanzhuang. Host rock	5,598
G. Yanzhuang. Melt fragment	10,217
	5,423
	5,503
H. Yanzhuang. Melt vein	7,016
J. Bluff. Host rock	13,348
	10,938
	6,272
<u>N. Ness County. Host rock #1</u>	5,052
O. Ness County. Host rock #2	6,668
	5,576
Q. Paranaiba. Host rock #2	5,593
V. Beeler. Host rock #1	6,466
W. Beeler. Host rock #2	6,609

Potassium-Argon Age Of Iron Meteorites

This dating ⁴⁶ was done in 1958. Even dating done fifty years later is giving dates just as absurd. The opening paragraph of the article states:

"Under the usual assumptions accepted for this method, ages have been calculated and found to be close to 10 billion years, which is about twice the reported age of stone meteorites, and also higher than the supposed age of the universe." ⁴⁷ The data in Table 16 below was taken from the data in ⁴⁸ the original essay.

Table 20		
Meteorite	Age	
K-Ar Dating	Billion Years	
Mt. Ayliff	6.9	
Arispe	6.8	
H. H. Ninninger	6.9	
Carbo	8.4	
Canon Diablo I	8.5	
Canon Diablo I	6.9	
Canon Diablo I	6.6	
Canon Diablo I	5.3	
Canon Diablo II	13	
Canon Diablo II	11	
Canon Diablo II	10.5	
Canon Diablo II	12	
Toluca I	5.9	
Toluca I	7.1	
Toluca II	10	
Toluca II	10.8	
Toluca II	8.8	

The Allende and Orgueil Chondrites This dating was done in 1976 by scientists ⁴⁹ from the United States Geological Survey, Denver, Colorado. The data in Table 17 below was taken from Pb-206/U-238 and Pb-208/Th-232 dating ⁵⁰ summary in the original essay. Thirty one of the dates below are older than the age of the Solar System. Four are over ten billion years. One date is older than the Big Bang explosion date.

Table 21		
Pb-206/U-238	Pb-208/Th-232	
Billion Years	Billion Years	
9.86	16.49	
8.95	14.4	
8.82	11.7	
7.82	10.40	
7.80	10.40	
7.75	10.1	
6.66	9.86	
6.50	9.55	
6.50	9.15	
6.44	7.52	
6.42	6.99	
6.35	6.40	
6.33	5.44	
6.05	5.35	
5.73	5.15	
5.73	4.81	

Ultra-high Excess Argon in Kyanites

These rocks from Japan were dated in 2005 using ⁵¹ the Argon 40 isotope method. The opening paragraph of this article states:

"A laser fusion Ar-Ar technique applied on single crystals of kyanite from river sands of the Kitakami Mountain region of northeast Japan yielded ages of up to 16 Ga, more than three times the age of the earth. Although the age values are geologically meaningless, the ultra-high excess argon in kyanites is unique and hitherto unreported. We interpret this to be an artifact of ultra-high argon pressure derived from radiogenic argon in potassium-rich phases such as phengites during the Barrovian type retrogression of the ultra-high pressure rocks in this region." ⁵²

"In this study, we report the results from fusion Ar-Ar technique on single crystals of kyanite recovered from river sands in the Kitakami region. However, the kyanites yielded ages that are two to three times older than the age of the earth." ⁵²

<u>Table 22</u>		
Sample	Billion Years	
Ky6	7.7	
Ky7	11.1	
Ky8	15.1	
Ky9	9.9	
Ky11	16.3	
Ky13	11.1	

Conclusion

Prominent evolutionist Brent Dalrymple states: "Several events in the formation of the Solar System can be dated with considerable precision." ⁵³

Looking at some of the dating it is obvious that precision is much lacking. He then goes on: "Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ⁵⁴

The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

- 1 <u>http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html</u> The age of 10 to 15 billion years for the age of the Universe.
- 2 <u>http://en.wikipedia.org/wiki/Age of the universe</u>
- 3 <u>http://arxiv.org/pdf/1001.4744v1.pdf</u> Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
- 4 <u>http://en.wikipedia.org/wiki/Age of the Earth</u>
- 5 <u>http://sp.lyellcollection.org/content/190/1/205</u> The age of the Earth, G. Brent Dalrymple Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
- 6 The age of the earth, Gérard Manhes Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370–382

- 7 <u>http://arxiv.org/pdf/astro-ph/0506458v1.pdf</u> The age of the Galactic disk, By E. F. del Peloso and L. da Silva Astronomy & Astrophysics, Manuscript no. 3307, February 2, 2008
- Kenneth R. Ludwig, Age Of Uranium Mineralization, Economic Geology, 1979, Volume 74, Pages 1654 – 1668
 <u>C:\Essays\Geo Dating\Age Earth\Ages 017.pdf</u>
- 9 Reference 8, Page 1661
- 10 Reference 8, Page 1658
- 11 Reference 8, Page 1664
- 12 Reference 8, Page 1662
- 13 Reference 8, Page 1663
- 14 Reference 8, Page 1658
- 15 <u>http://www.bgc.org/isoplot_etc/isoplot.html</u>
- 16 Reference 8, Page 1654
- 17 R. J. Walker, African Peridotite Xenoliths, Geochimica et Cosmochimica Acta, 1989, Volume 53, Page 1583-1595 C:\Essays\Geo_Dating\Age_Earth\Older_Than_Earth_5.pdf
- 18 Reference 17, Page 1591
- 19 Reference 17, Page 1588
- 20 Principles Of Isotopic Geology, Gunter Faure, John Wiley Publishers, New York, 1986, Page 269
- 21 Reference 16, Page 1590
- 22 D. G. Pearson, The Siberian Craton, Geochimica et Cosmochimica Acta, 1995, Volume 59, Number 5, Page 959-977 C:\Essays\Geo_Dating\Age_Earth\Older_Than_Earth_6.pdf
- 23 Reference 22, Page 970
- 24 Reference 22, Page 971
- 25 Reference 22, Page 968
- Paul Pellas, History Of The Acapulco Meteorite, Geochemica Et Cosmochemica Acta, 1997, Volume 61, Number 16, pp. 3477 – 3501
 <u>C:\Essays\Geo Dating\Age Earth\Meteorite Pellas.pdf</u>
- 27 Reference 26, Page 3500
- L. Rancitelli, Potassium: Argon Dating of Iron Meteorites, Science, 1967, Volume 155, Pages 999 - 1000
 <u>C:\Essays\Geo Dating\Age Earth\Meteor Rancitelli.pdf</u>
- 29 Reference 28, Page 999
- 30 Reference 28, Page 1000

- 31 D. G. Pearson, Stabilisation of Archaean lithosphere, Earth and Planetary Science Letters, 1995, Volume 134, Pages 341-357 C:\Essays\Geo_Dating\Age_Earth\Pearson.pdf
- 32 Reference 31, Page 344
- 33 Reference 31, Page 348
- 34
 Yuri Amelin, Pb isotopic age of the Allende chondrules, Meteoritics And Planetary Science, 2007, Volume 42, Numbers 7/8, Pages 1321 1335

 C:\Essays\Geo_Dating\Age_Earth\Amelin_C.pdf
- 35 Reference 34, Page 1324
- 36 http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2007.tb00577.x/suppinfo
- J. L. Birck, Rhenium-187/Osmium-187 in iron meteorites, Meteoritics And Planetary Science, 1998, Volume 33, Pages 641-453
 C:\Essays\Geo_Dating\Age_Earth\Meteorite_Birck.pdf
- 38 Reference 37, Page 649
- 39 D. D. Bogard, Ar-39/Ar-40 Dating of Mesosiderites, Geochemica Et Cosmochemica Acta, 1990, Volume 54, Pages 2549 – 2564
 <u>C:\Essays\Geo_Dating\Age_Earth\BOGARD_A.pdf</u>
- 40 Reference 39, Page 2563, 2564
- 41 Ekaterina V. Korochantseva, 40Ar-39Ar Chronology, Meteoritics And Planetary Science, 2009, Volume 44, Number 2, Pages 293-321 C:\Essays\Geo Dating\Age Earth\Meteorite Korochantseva.pdf
- 42 Reference 41, Pages 316-321
- 43 Reference 41, Page 298
- Joachim Kunz, Shocked meteorites: Argon-40/Argon-39, Meteoritics And Planetary Science, 1997, Volume 32, Pages 647 670
 <u>C:\Essays\Geo_Dating\Age_Earth\Meteorite_Kunz.pdf</u>
- 45 Reference 44, Pages 664-670
- 46 R. W. Stoenner, Potassium/Argon age of iron meteorites, Geochemica Et Cosmochemica Acta, 1958, Volume 15, Pages 40-50 C:\Essays\Geo_Dating\Age_Earth\Meteorite_Stoenner.pdf
- 47 Reference 46, Page 40
- 48 Reference 46, Pages 45, 46
- 49 Mitsunobu Tatsumoto, The Allende and Orgueil Chondrites , Geochemica Et Cosmochemica Acta, 1976, Volume 40, pages 617 – 634 <u>C:\Essays\Geo_Dating\Age_Earth\Meteorite_Tatsumoto.pdf</u>
- 50 Reference 49, Page 627
- 51 T. Itaya, Ultra-high Excess Argon in Kyanites, Gondwana Research, 2005, Volume 8, Number 4, Pages 617-621 C:\Essays\Geo_Dating\Age_Earth\Itaya.pdf

- 52 Reference 51, Page 617
- 53 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.
- 54 Reference 53, Page 23

www.creation.com