The Uranium 235 Dating Method

By Paul Nethercott August 2013

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. Standard evolutionist publications give the age of the universe as 13.75 Billion years.

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ⁴ "The Solar System, formed between 4.53 and 4.58 billion years ago." ¹ "The age of 4.54 billion years found for the Solar System and Earth." ¹ "A valid age for the Earth of 4.55 billion years." ^{5,6}

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ⁷ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically with the Rubidium/Strontium ages. The U/Th/Pb ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang?

If we use isotopic formulas $^{8-11}$ given in standard geology text we can arrive at ages from the Rb/Sr and Nd/Sm ratios. The formula for Rb/Sr age is given as:

$$t = \frac{2.303}{\lambda} \log \left(\frac{(87Sr/86Sr) - (87Sr/86Sr)_0}{(87Rb/86Sr)} + 1 \right)$$
 [1]

Where t equals the age in years. λ equals the decay constant. (87Sr/86Sr) = the current isotopic ratio. $(87Sr/86Sr)_0$ = the initial isotopic ratio. (87Rb/86Sr) = the current isotopic ratio. The same is true for the formula below.

$$t = \frac{2.303}{\lambda} \log \left(\frac{(143Nd/144Nd) - (143Nd/144Nd)_0}{(147Sm/144Nd)} + 1 \right)$$
 [2]

Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Petrogenesis of the Flood Basalts

According to the article ¹² this basalt form the Northern Kerguelen Archipelago was dated in 1998 by scientists from the Massachusetts Institute Of Technology, University of Brussels, Belgium and the San Diego State University. According to the essay: "The dominance of this isotopic signature in archipelago lavas for 30 my and its presence in ~40 Ma gabbros is consistent with the previous interpretation that these are isotopic characteristics of the Kerguelen Plume." ¹² Various tables ¹³ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over a 44 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Mount Bureau	Age	Age	Age	Age
Summary	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th
Average	5,006	5,924	5,161	8,410
Maximum	5,020	23,366	8,496	44,378
Minimum	4,994	3,335	4,454	2,650
Difference	26	20,031	4,042	41,728

Mt. Rabouillere	Age	Age	Age	Age
Summary	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th
Average	5,008	4,903	4,975	6,142
Maximum	5,019	5,355	5,100	7,788
Minimum	5,000	4,305	4,793	2,799
Difference	20	1,050	307	4,989

Nature of the Source Regions

According to the article ¹⁴ this lava from southern Tibet was dated in 2004 by scientists from the Open University in Milton Keynes, the University of Bristol and Cardiff University. According to the essay: "Most samples are Miocene in age, ranging from 10 to 25Ma in the south and 19Ma to the present day in northern Tibet." ¹⁵ Various tables ¹⁶ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over an 88 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

207Pb/235U Age	Model Age	Ratio	Percentage
5,136	0.5	10,273	10,272,962
5,138	0.5	10,275	10,275,154
5,135	13	395	395,000
5,140	18.5	278	277,839
7,470	13	575	574,597
7,471	12.5	598	597,649

207Pb/235U Age	Model Age	Ratio	Percentage
313	24.0	13	13,026
946	13.8	69	68,534
266	13.8	19	19,267
238	13.8	17	17,265
294	13.3	22	22,095
447	18.8	24	23,757
482	17.3	28	27,878

Generation of Palaeocene Adakitic Andesites

According to the article ¹⁷ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Palaeocene (c. 55-58Ma) adaktic andesites from the Yanji area." ¹⁷ Numerous table and charts affirm this as the true age. ¹⁸ A table ¹⁹ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 10 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

207Pb/206Pb	208Pb/232Th	206Pb/238U	207Pb/235U
Age	Age	Age	Age
5,024	10,518	9,669	6,052
5,023	10,277	9,552	6,051
5,023	8,529	9,526	6,051
5,023	8,360	8,443	5,828
5,021	8,165	7,929	5,826
5,020	7,800	7,403	5,641

Ivisaartoq Greenstone Belt

According to the article ²⁰ this rock formation from southern West Greenland was dated in 2007 by scientists from Canada, Denmark, USA and Austria. According to the essay the true age is: "The Mesoarchean (ca. 3075Ma) Ivisaartoq greenstone belt in southern West Greenland." ²⁰ A table ²¹ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 3 billion years!

207Pb/235U	208Pb/232Th	206Pb/238U	207Pb/206Pb
Age	Age	Age	Age
5,288	2,671	2876	3082
5,162	2,860	2712	2998
5,299	2,586	2955	3046
5,407	2,305	3195	3059
5,302	2,726	2930	3067

Geophysical Systems

According to the article ²² this rock formation was dated in 2003. A table ²³ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 82 billion years!

Dating	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th	87Rb/86Sr	147Sm/144Nd
Summary	Age	Age	Age	Age	Age	Age
Average	15,345	7,019	4,936	39,068	102	102
Maximum	38,340	10,872	5,043	82,865	140	140
Minimum	3,125	4,385	4,760	5,577	70	68
Std Deviation	9,657	1,750	63	27,390	16	17

History Of The Pasamonte Achondrite

According to the article this meteorite specimen was dated in 1977 by scientists from the United States Geological Survey, Colorado and the Department of Chemistry and Geochemistry, Colorado School of Mines. ²⁴ The article states that Rubidium/Strontium dating affirms that this material is 4.5 billion years old. ²⁵ If we run the various isotope ratios ²⁵ from two different tables in the article through Microsoft Excel we get the following values respectively:

Summary	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th
Average	3,088	3,666	4,566	2,263
Maximum	5,694	5,032	4,963	14,800
Minimum	103	865	4,440	-10,700
Difference	5,591	4,167	523	25,500

If we run the 87Rb/86Sr isotope ratios ²⁵ from the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary

HO/DI TIEC Duti	ng bannar y
Average	4,403
Maximum	6,674
Minimum	2,412
Difference	4,262

Table 18

The Thorium/Lead dates are up to twelve billion years older. The so called true age is just a guess.

An Extremely Low U/Pb Source

According to the article 26 this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The Pb-Pb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ± 28 Ma, which is similar to the U-Pb (3850 ± 150 Ma) and Th-Pb (3820 ± 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ± 57 Ma and an initial 143Nd/I44Nd value of 0.50797 ± 10 . The Rb-Sr data yield an internal isochron age of 3840 ± 32 Ma."

Rb/Sr Age Dating Summary

Average	3,619
Maximum	5,385
Minimum	721
Difference	4,664

Table 47

Uranium Age Dating Summary

Claman rige Daning Summary					
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U	
Summaries	Age	Age	Age	Age	
Average	4,673	8,035	10,148	4,546	
Maximum	5,018	56,923	65,286	8,128	
Minimum	3,961	1,477	2,542	2,784	
Difference	1,057	55,445	62,744	5,344	

Table 48

The article claims that the Rb/Sr age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ²⁷ so stupid? Or are they right and the Rb/Sr ²⁸ is wrong?

208Pb/232Th, Maximum Ages

Age	Age	Age	Age
65,286	14,430	9,094	5,401
33,898	14,410	6,520	5,396
25,013	13,107	6,166	5,365
22,178	12,738	6,121	5,098
21,204	11,641	5,671	5,035
17,611	11,174	5,408	4,678

Table 49

206Pb/238U, Maximum Ages

Age	Age	Age	Age
56,923	10,895	6,764	5,777
27,313	10,278	6,670	5,625
17,873	9,653	6,449	5,602
13,680	8,009	6,436	5,278
13,623	7,395	6,070	5,147

Table 50

Petrogenesis and Origins of Mid-Cretaceous

According to the article ²⁹ this specimen from the Intraplate Volcanism in Marlborough, New Zealand was dated in 2010 by scientists from New Zealand. According to the essay: "the intraplate basalts in New Zealand that have been erupted intermittently over the last c. 100 Myr." ³⁰ Various tables ³¹ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 10 billion year range. None of the Lead based dating methods even come vaguely close to a Cretaceous age.

Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U
Summaries	Age	Age	Age	Age	Age
Average	4,876	4,416	59	6,333	3,515
Maximum	4,945	5,159	85	10,716	5,717
Minimum	4,836	4,088	15	4,785	2,712
Difference	109	1.071	70	5.931	3,005

U-Th-Pb Dating Of Secondary Minerals

According to the article ³² this rock formation Yucca Mountain, Nevada was dated in 2008 by scientists from United States Geological Survey, Geological Survey of Canada, and the Australian National University. According to the essay the true age is unknown: "The U–Pb system in opal and chalcedony allows dating in the age range from 50 ka to millions of years and older (Ludwig et al., 1980; Neymark et al., 2000, 2002). Recently, the reliability of U–Pb dating of opal was questioned." ³³ Other authors have affirmed the same problem. ³³ Two tables ³⁴ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 353 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 350,000 times older than the youngest date.

Age Dating Summary

Dating	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summary	Age	Age	Age	Age
Average	3,459	4,891	9,984	12
Maximum	8,126	31,193	352,962	13
Minimum	-445	1	2	11
Difference	8,571	31,192	352,960	2

Table 78

Another table ³⁵ in the essay has a list of calculated dates As we can see below they are all at radical disagreement with each other. There is a spread of dates of 82 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 82,000 times older than the youngest date.

Age Dating Summary

rige Duting Summary				
Dating	206Pb/238U	207Pb/235U	208Pb/232Th	87Rb/86Sr
Summary	Age	Age	Age	Age
Average	1,540	46	7,687	12
Maximum	20,209	486	82,030	13
Minimum	1	0	3	11
Difference	20,208	486	82,027	2

Table 79

References

- 1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
- 2 http://en.wikipedia.org/wiki/Age_of_the_universe
- 3 http://arxiv.org/pdf/1001.4744v1.pdf Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
- 4 http://en.wikipedia.org/wiki/Age_of_the_Earth
- 5 http://sp.lyellcollection.org/content/190/1/205
 The age of the Earth, G. Brent Dalrymple, Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
- The age of the earth, Gérard Manhes, Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370–382
- 7 http://www.bgc.org/isoplot_etc/isoplot.html
- Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73 [Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].
- Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].
- Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990. Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].

The Uranium 235 Dating Method

11	Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].
12	Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711–748
13	Reference 119, Pages 729, 730
14	Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 555
15	Reference 121, Pages 556
16	Reference 121, Pages 566, 575, 576
17	Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 661
18	Reference 124, Pages 676-678
19	Reference 124, Pages 684
20	Ivisaartoq Greenstone Belt, Gondwana Research, Volume 11 (2007) Page 69
21	Reference 20, Pages 86
22	Geochemistry Geophysics Geosystems, 2003, Volume 4, Page 1089,
23	http://earthref.org/ERDA/download:147/
24	History Of The Pasamonte Achondrite, Earth and Planetary Science Letters, Volume 37, 1977 Pages 1
25	Reference 33, Pages 3, 9
26	An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702
27	Reference 75, Pages 4690, 4691
28	Reference 75, Pages 4696
29	Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51, Number 10, Pages 2003-2045
30	Reference 110, Pages 2038
31	Reference 110, Pages 2024-2026
32	U-Th-Pb Dating Of Secondary Minerals, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 2067
33	Reference 32, Pages 2068
34	Reference 32, Pages 2072-2074, 2080-2081

www.creation.com