Rocks With Negative Dates

By Paul Nethercott
August 2013

Introduction

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." 4 "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

1. Ion Microprobe U-Pb Dating

These rocks from Japan were dated ${ }^{8}$ in 2001 using the Rubidium/Strontium and Potassium/Argon method. If we run the isotopic ratios through Isoplot ${ }^{9}$ and use formulas listed in standard geology books ${ }^{10}$ we find that the rock samples ${ }^{11}$ gave ages between 5 billion years and negative years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be older than the Earth? The author admits some of the dates are negative: "Though a negative age has no practical use, it does suggest that it is younger than 0.12 Ma." ${ }^{12}$

Table 1

Table 2	Age	Age	Age
Data	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	Ratio
Average	$\mathbf{6 2}$	$\mathbf{4 , 7 1 0}$	$\mathbf{7 6}$
Maximum	$\mathbf{6 3 1}$	$\mathbf{5 , 1 3 5}$	$\mathbf{8}$
Minimum	$\mathbf{0}$	$\mathbf{3 , 7 7 1}$	$\mathbf{3 7 7 1}$

Table 2

Table 3	Age	Age	Age
Data	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	Ratio
Average	$\mathbf{0 . 8 8}$	4,742	5,388
Maximum	2.91	4,978	$\mathbf{1 , 7 1 0}$
Minimum	$\mathbf{0 . 2 5}$	$\mathbf{4 , 4 7 9}$	$\mathbf{1 7 , 9 1 6}$

2. The Long Valley Rhyolitic

These rocks from California were dated ${ }^{13}$ in 1997 using the Rubidium/Strontium and Potassium/Argon method. The rock samples gave ages between 1 million years and negative years old! Since the Earth exists in the present how can rocks have formed in the future? The author admits some of the dates are negative:
"The negative ages are a clear indication that some phases have not reached Sr isotope equilibration with their current host glass." ${ }^{14}$
"In contrast, feldspars from the second group yield mineral ages that are geologically unreasonable ranging from close to the eruption age of the Bishop Tuff to negative ages." ${ }^{15}$

3. Rn-Generated 206Pb

These rocks from South Africa were dated ${ }^{16}$ in 1998 using the Uranium/Lead method. When we run the ratios ${ }^{17}$ through Isoplot the rock samples gave ages between 543 and 6,400 million years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be older than the Earth? According to the article the true age is between 2 and 2.6 billion years old: "Assigning a 2.02 Ga age of mineralization and constructing secondary isochrons for paragenetically early galena and chalcopyrite, ages of the source uraninite are calculated as 2.6-2.4 Ga." ${ }^{18}$

Table 3	
Age	Age
Pb 207/206	Pb 207/206
6451	5799
6330	5763
6315	5735
6217	5723
6109	5711
6009	4966

The author admits some of the dates are negative: "Analyses lying even farther to the fight, with the implication of implausibly young and even negative ages, force us to consider alternative explanations for this subsidiary array." ${ }^{19}$

4. 40Argon/39 Argon Age of a Tholeiitic Basalt

These rocks from California were dated ${ }^{20}$ in 2006 using the Argon method. The rock samples gave ages ${ }^{21}$ between 2,357 and -579 thousand years old! Since the Earth exists in the present how can rocks have formed in the future?

Table 4

Sample	Minimum	Maximum	Difference	Ratio
Cinder Butte	-579.3	56.7	636	$1,022 \%$
Andesite of Sugarloaf Peak	14.7	589.5	636	$4,010 \%$
Little Potato Butte	-51.6	585.9	637.5	$1,135 \%$
Andesite of Potato Butte 1	-386.3	164.5	550.8	235%
Andesite of Potato Butte 2	-289.6	2357.4	2647	$\mathbf{8 1 4 \%}$
Hat Creek Basalt 1	10	2950	2647	$29,500 \%$
Hat Creek Basalt 2	$-\mathbf{8 9 . 3}$	$\mathbf{9 2 . 4}$	181.7	103%

The author admits some of the dates are negative: "The Ar isotopic data, when cast on an inverse isochron diagram, indicate that the first two steps are enriched in 36Ar and thus yield negative ages. These first two steps are most likely influenced by low-temperature alteration of the sample." ${ }^{22}$

5. Isotopic Systematics of Ultramafic Xenoliths

These rocks from North China were dated ${ }^{23}$ in 2007 using the Rubidium/Strontium and Uranium/Lead methods. The rock samples gave ages ${ }^{24}$ between -3 and 9 billion years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 4.5 billion years older than the Earth? The author admits some of the dates are negative: "The Nd model ages for the individual data points are variable, from $\sim 2.8 \mathrm{Ga}$ to negative ages (Table 3), consistent with our earlier observation that REE patterns for all the samples display some degree of secondary metasomatic overprinting by LREE-enriched silicate melts." $\underline{25}$

If we run the isotopic ratios ${ }^{24}$ through Isoplot we get the ages listed in table 6 . There is a $\mathbf{1 2 , 6 9 8}$ million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Table 5

Million Years	
$-3,209$	Million Years
$-1,747$	$\mathbf{9 6 5}$
136	4,803
530	7,935
600	

Table 6

$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$
$\mathbf{5 , 0 4 9}$	$\mathbf{9 , 4 8 9}$
$\mathbf{5 , 0 3 5}$	$\mathbf{1 , 8 2 1}$
$\mathbf{5 , 0 3 4}$	$\mathbf{3 3 8}$
$\mathbf{5 , 0 2 9}$	$\mathbf{9 5}$
$\mathbf{5 , 0 1 2}$	
$\mathbf{5 , 0 0 9}$	
$\mathbf{5 , 0 0 6}$	
$\mathbf{5 , 0 0 4}$	

6. Timing of Precambrian Melt Depletion

These rocks from Wyoming were dated ${ }^{26}$ in 2003 using the Rubidium/Strontium and Neodymium/Samarium method. The rock samples [Tables $7 \& 8$] gave ages ${ }^{27}$ between -2 and 50 billion years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 35 billion years older than the Big Bang explosion? The author admits some of the dates are negative: "That complete equilibrium was not achieved during this interaction is shown by the fact that the garnet-clinopyroxene tie lines for the different radiometric systems in the same sample do not provide ages that agree, and in the case of two of the Williams samples the $\mathrm{Sm}-\mathrm{Nd}$ tie lines provide negative ages (Carlson et al., 1999a)." 28

Table 7

Billion Years	Billion Years
-1.24	6
-1.24	7.46
-0.22	47.37
4.54	49.63

There is a 51,970 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.
Table 8

Billion Years	Billion Years
-2.34	-4.24
-1.75	-1.47
-0.98	-1.14
-0.86	-0.84
4.47	2.51

If we run the Lead 207/206 ratios ${ }^{29}$ through Isoplot we find that the rocks are 5 billion years old.

Table 9

Average	
Maximum	$\mathbf{4 , 9 3 5}$
Minimum	$\mathbf{4 , 4 2 1}$

The author claims that the true age is just 2.6 billion years old: "The mean TMA of these five samples is 2.86 Ga (or 3.07 Ga without the apparently younger sample HK1-24), and given the lower bound mean TRD age of 2.61 Ga , a depletion age in the late Archean seems likely." ${ }^{30}$

7. Re-Os, Sm-Nd, and Rb-Sr Isotope Evidence

These rocks from Uganda were dated ${ }^{31}$ in 1993 using the Rubidium/Strontium and Neodymium/Samarium methods. Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 6 billion years older than the Earth? The author admits some of the dates are negative:
"If Re-Os model ages are calculated using the conventional model age approach, i.e., using the measured Re/Os and osmium isotope composition in comparison to some model for bulk-Earth osmium isotope evolution, several peridotites yield negative ages, or ages that are considerably older than the Earth (Table 5). This indicates that some peridotites cannot have evolved as closed systems."

If we run the Osmium isotope ratios ${ }^{33}$ through Microsoft Excel we get the following results.
Table 10

Million Years	
$-1,584$	Million Years
$-1,504$	-6.46
-478	-1.58
-35	-0.73
-19	2.23

1870s/186Os Ages
The rock samples below gave ages ${ }^{32}$ between -1.5 and 11 billion years old!
Table 11

Sm-Nd	Rb-Sr	\% Ratio
258	5,454	2,114
959	6,245	651
434	12,716	2,930
2,038	1,351	66
1,157	4,026	348

Table 12

$\mathrm{Re} / \mathrm{Os}$	$\mathrm{Sm} / \mathrm{Nd}$	$\mathrm{Rb} / \mathrm{Sr}$
5.5	3.2	8.3
11	3	0.99
6.9	3	
6.6	2.7	
6 Negative	4 Negative	7 Negative

There is a 14,300 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Conclusion

Yuri Amelin states in the journal Elements that radiometric dating is extremely accurate: "However, four 238U/235U-corrected CAI dates reported recently (Amelin et al. 2010; Connelly et al. 2012) show excellent agreement, with a total range for the ages of only 0.2 million years - from $4567.18 \pm 0.50 \mathrm{Ma}$ to 4567.38 ± 0.31 Ma." ${ }^{34-36}$

To come within 0.2 million years out of 4567.18 million years means an accuracy of 99.99562%. Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in radiometric dating is selectively taken to suit and ignores data to the contrary.

References

10 Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

13 The Long Valley Rhyolitic, Geochimica et Cosmochimica Acta, 1998, Volume 62, Number 21/22, Pages 3561-3574

Reference 13, page 3567
15 Reference 13, page 3569
16
http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
The age of 10 to 15 billion years for the age of the Universe.
http://en.wikipedia.org/wiki/Age_of_the_universe
http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
http://en.wikipedia.org/wiki/Age_of the_Earth
http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
http://arxiv.org/pdf/astro-ph/0506458v1.pdf
The age of the Galactic disk, By E. F. del Peloso and L. da Silva
Astronomy \& Astrophysics, Manuscript no. 3307, February 2, 2008

C:\Essays\Geo Dating\Dating\Negative Ages\Negative.xlsm
Ion Microprobe U-Pb Dating, Journal of Volcanology and Geothermal Research, Volume 117, 2002, Pages 285-296
http://www.bgc.org/isoplot_etc/isoplot.html

Reference 8, page 288, 290
Reference 8, page 291

Rn-Generated 206Pb, Mineralogy and Petrology, 1999, Volume 66, Pages 171-191

Reference 16, page 182, 183
Reference 16, page 171
Reference 16, page 176
40Ar/39Ar Age of a Tholeiitic Basalt, Quaternary Research, Volume 68, 2007, Pages 96-110
Reference 20, pages 101, 102
Reference 20, pages 103
Isotopic Systematics of Ultramafic Xenoliths, Chemical Geology, Volume 248, 2008, Pages 40-61
Reference 23, page 46
Reference 23, page 54
Timing of Precambrian Melt Depletion, Lithos, Volume 77, 2004, Pages 453-472
Reference 26, page 458, 460
Reference 26, page 466
Reference 26, page 459
Reference 26, page 463
Re-Os, Sm-Nd, and Rb-Sr Isotope Evidence, Geochemica et Cosmochimica Acta, 1995, Volume 59, Number 5, Pages 959-977

Reference 31, pages 970, 971
Reference 31, pages 963
Dating the Oldest Rocks in the Solar System, Elements, 2013, Volume 9, Pages 39-44
Amelin, Earth and Planetary Science Letters, 2010, Volume 300, Pages 343-350
Connelly, Science, 2012, Volume 338, Pages 651-655

www.creation.com

