The Thorium Lead Dating Method

By Paul Nethercott September 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable then it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years.¹ Standard evolutionist publications give the age of the universe as 13.75 Billion years.^{2,3}

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ⁴ "The Solar System, formed between 4.53 and 4.58 billion years ago."¹ "The age of 4.54 billion years found for the Solar System and Earth." ¹ "A valid age for the Earth of 4.55 billion years." ^{5,6}

If we use the computer program Isoplot ⁷ and calculate the ages of the isoptopic ratios in geology magazine articles we see why not dates have been put beside them. Many dates are negative or older than the age of the universe. That is logically impossible. How can the rock have formed millions of years in the future? The dating methods contradict each other and give ages that disagree with the Geological Column.

How can Earth rocks be dated as being older than the Big Bang? Here are dates calculated from several articles taken from major geology magazines which give absolutely absurd dates.

Tracing the Indian Ocean Mantle

These samples were dated in 1998 by scientists from the School Of Ocean And Earth Science And Technology, University Of Hawaii, Honolulu. According to this article the samples were taken from volcanic material that is only 100 million years old.⁸ If we put isotopic ratios ⁹ into Microsoft Excel and run the through Isoplot we find the average age is almost 17 billion years old. In Table 2 we see some fantastic dates.

Average	16,890
Maximum	82,561
Minimum	1,139
Difference 81,422	
Table 1	

Million Years	Million Years	Million Years	Million Years
82,561	27,364	17,662	10,728
52,909	27,241	15,723	9,986
51,126	25,102	15,132	9,570
39,277	24,925	15,032	9,354
37,502	23,860	14,950	9,331
35,301	23,310	14,699	9,290
31,541	21,943	14,232	9,141
30,608	20,266	13,778	6,929
28,811	20,144	13,276	6,663
28,284	19,005	12,140	6,590
27,460	18,674	11,754	6,505

Petrogenesis of the Flood Basalts

These samples were dated in 1998 by scientists from the Department Of Earth, Atmospheric And Planetary Sciences, Massachusetts Institute Of Technology. According to this article the samples were taken from the volcanic crust of the Kerguelen Archipelago that is only 30 million years old.¹⁰ If we put isotopic ratios ¹¹ into Microsoft Excel and run the through Isoplot we find the average age of Mount Bureau is over 5 billion years old. In Table 3 we see some fantastic dates for both mountains.

I norium/Lead – Maximum Ages		
Mount Bureau	Mount Rabouillere	
44,378	7,788	
9,092	7,518	
8,651	7,416	
8,624	6,560	
8,144	6,422	
8,142	6,328	
8,023	6,216	
7,507	5,966	
7,245	4,406	
7,046	2,799	
6,961		
6,548		
5,787		
5,773		
5,639		
5,613		
5,107		
Тэ	hle 3	

`horium/Lead	– Maximum /	Ages
nor runn/ Leuu	Triumin 1	

Nature of the Source Regions

These samples were dated in 2004 by scientists from the Department Of Earth Sciences, The Open University, England. According to the article: "Most samples are Miocene in age, ranging from 10 to 25Ma in the south and 19Ma to the present day in northern Tibet."^{12, 13} If we run the 87Rb/86Sr ratios¹⁴ in the essay through Isoplot we get dates between 1 and 24 million years. If we run the Uranium/Lead ratios ¹⁵ in the essay through Isoplot we get unbelievable dates as listed below in Table 4.

<u> Thorium/Lead – Maximum Ages</u>		
North Tibet	South Tibet	
Age	Age	
88,294	33,191	
81,614	25,015	
13,475	11,102	
11,504	9,265	
11,420	8,205	
11,350	6,092	
	4,826	
Table 4		

Generation of Palaeocene Adakitic Andesites

These samples were dated in 2007 by scientists from the Chinese Academy Of Sciences, Wushan, Guangzhou. According to the article: "The initial Sr, Nd and Pb isotopic ratios were corrected using the Ar/Ar age of 55Ma."^{16, 17} If we run the Uranium/Lead ratios ¹⁸ in the essay through Isoplot we get unbelievable dates as listed below in Table 5.

<u> Thorium/Lead – Maximum Ages</u>	
Sample	208Pb/232Th
04YJ-6	10,518
04YJ-5	10,277
04YJ-9	8,529
04YJ-7	8,360
04YJ-1	8,165
04YJ-2 7,800	
Table 5	

Evidence for a Widespread Tethyan Upper Mantle

In 2005 scientists from the School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu dated these rocks. According to the article: "Isotopic data for such sites show that mantle similar to that beneath the modern Indian Ocean was present, at least in places, as long ago as 140 Ma, the age of the oldest true Indian Ocean crust yet sampled." ^{19, 20} If we run the Rb/Sr ratios ²¹ through Isoplot we see that the average age is 168 million years. [Table 6]

<u>Rb/Sr Ages Summary</u>		
Average	168	
Maximum	1,739	
Minimum	0	
Difference 1,739		
Table 6		

If we run the Pb/Th ratios ²² through Isoplot we see that the average age is 22,675 million years. [Table 7]

Pb/Th Ages Summary				
Maximum Minimum Difference Average				
58,795	4,869	53,926	22,675	
Table 7				

11101	Tulli/LCau -		igus
Age	Age	Age	Age
58,796	29,705	18,607	11,427
54,206	27,710	18,121	11,377
48,252	27,422	17,797	11,366
47,976	26,674	17,787	11,241
46,117	26,369	17,591	10,718
42,203	25,972	17,536	10,699
42,192	25,590	17,054	10,699
41,604	25,096	16,053	10,300
41,343	24,010	15,299	9,357
41,231	22,718	14,340	8,632
39,637	22,307	13,845	8,486
38,125	22,228	13,772	8,057
37,115	21,827	13,652	6,497
35,012	21,560	13,404	5,573
33,584	19,910	13,403	5,425
31,556	19,594	13,006	4,869
31,286	19,148	12,171	
30,740	18,765	11,540	
	Tal	ble 8	

Thorium/Load Mavimum Ages

Post-Collisional Potassic and Ultrapotassic According to the article: "Major and trace element, Sr–Nd–Pb–O isotope and mineral chemical data are presented for post-collisional ultrapotassic, silicic and high-K calc-alkaline volcanic rocks from SW Tibet, with 40Ar/39Ar ages in the range 17–25 Ma." ^{23, 24} If we run the Rb/Sr ratios ²⁵ through Isoplot we see that the average age is 43 million years. [Table 9]

<u>Rb/Sr Ages Summary</u>		
Average	43	
Maximum	1,258	
Minimum	-1,439	
Difference	2,697	
Table 9		

If we run the Pb/Th ratios ²⁶ through Isoplot we see that the average age is 78,808 million years. [Table 10]

Pb/Th Ages Summary			
Maximum Minimum Difference Average			
99,275 67,704 31,570 78,808			
Table 10			

In Table 11 we see a comparison between the model age ["True Age"] and the isotopic age derived from atomic ratios. We can see how far in error the Thorium dating system is.

208Pb/232Th Ages

Age	Model Age	
68,343	43	
67,704	43	
70,277	43	
71,706	43	
95,541	43	
99,275	43	
Table 11		

Continental Lithospheric Contribution to Alkaline

According to the article: "These two genetically related alkaline complexes were emplaced at the east Atlantic continent-ocean boundary during the Upper Cretaceous, i.e. 66-72 m. y. ago"²⁷ If we run the Rb/Sr ratios²⁸ through Isoplot we see that the average age is 65 million years. [Table 9]

<u>Rb/Sr Ages Summary</u>		
Average	65	
Maximum	74	
Minimum	4	
Difference	78	
Table 12		

If we run the Pb/Th ratios ²⁸ through Isoplot we see that the average age is 6,126 million years. [Table 13]

Pb/Th Ages Summary				
Maximum Minimum Difference Average				
10,084 2,616 7,467 6,126				
Table 13				

<u>2001 0/23</u>	<u>Z I II Ages</u>	
Age	Model Age	
208Pb/232Th	Million Years	
10,084	66	
9,320	66	
8,101	66	
7,502	66	
7,080	66	
6,891	66	
6,655	66	
6,313	66	
5,830	66	
5,755	66	
5,029	66	
Table 14		

208Pb/232Th Ages

Pin Pricking The Elephant

According to tables²⁹ in the article, the rock formation is only 120 million years old. If we run the ²⁰⁷Pb/²⁰⁶Pb ratios ³⁰ through Isoplot we get an average age of 5,000 million years. If we run the Pb/Th ratios ³¹ through Isoplot we see in Table 15 that the age is between 12 billion and 14 billion years old.

<u>208Pb/232Th Ages</u>						
Pb/Pb Age 5,379 5,385 5,000						
Pb/Th Age	12,090	12,845	14,459			
Pb/U Age 4,579 5,498 6,936						
Table 15						

Chronology And Geochemistry Of Lavas

According to the article: "New ⁴⁰Ar/³⁹Ar incremental heating age determinations for dredged rocks from volcanoes east of Salas y Gomez Island show that, with very few exceptions, ages increase steadily to the east from 1.4 to 30 Ma³² Tables ³³ in the article affirms this as the true age of the geological formation. ³³ If we run the Pb/Th ratios ³⁴ through Isoplot we see that the average age is 8,325 million years. [Table 16] In Table 17 we see some of the incredible dates all the way from 5 billion to almost 24 billion years old.

<u>Pb/Th Ages Summary</u>			
Chronology	207Pb/206Pb	206Pb/238U	208Pb/232Th
Summary	Age	Age	Age
Average	4,919	3,694	8,325
Maximum	4,971	9,645	23,850
Minimum	4,881	1,166	4,129
Difference	90	8,479	19,720
Tabla 16			

Table 16

Age	Age
23,850	6,498
16,942	6,421
15,364	6,396
13,004	6,298
9,061	6,245
8,393	5,896
7,654	5,848
7,599	5,754
7,101	5,453
7,054	5,446
6,607	
Tah	le 17

Thorium/Lead - Maximum Ages

Ion Microprobe U-Th-Pb Dating

According to the article: "The formation age of this meteorite is 1.53 ± 0.46 Ga. On the other hand, the data of nine apatite grains from Lafayette are well represented by planar regression rather than linear regression, indicating that its formation age is 1.15 ± 0.34 Ga³⁵ If we run the Pb/Th ratios³⁶ through Isoplot we see that the average age is 20,409 million years. [Table 18] In Table 19 we see some of the incredible dates all the way from 7 billion to over 40 billion years old.

Chronological	238U/206Pb	Th232/Pb208	Pb207/Pb206
Summary	Age	Age	Age
Average	4,416	20,409	4,768
Maximum	8,975	40,271	5,348
Minimum	1,245	7,426	3,897
Standard Dev	2,023	9,101	337
Table 18			

Uranium/Thorium/Lead - Ages Summary

<u> Thorium/Lead – Maximum Ages</u>

Age	Age
40,271	17,062
38,926	16,516
29,016	15,349
28,642	13,929
26,241	13,153
24,801	12,380
23,510	11,689
21,169	11,334
18,374	7,426
17,980	
Tab	le 18

U-Th-Pb Dating Of Secondary Minerals

This dating was done in 2008 on minerals from Yucca Mountain, Nevada. It was done by scientists from the U.S. Geological Survey, Denver, Colorado, the Geological Survey of Canada, Ottawa, Ontario and the Research School of Earth Sciences and Planetary Science Institute, The Australian National University. According to the article: "Most ²⁰⁶Pb/²³⁸U ages determined for the calcite subsamples are much older than the 12.8-Ma age of the host tuff (Table 3 and Fig. 5) and thus unreasonable." ³⁷ If we run the Pb/Th ratios ³⁸ through Isoplot we see that the average age is 10,000 million years [Table 19]. The Rb/Sr ratios ³⁹ gave a uniform result of 11 to 13 million years old [Table 19].

addi b/ada in riges versus Kb/bi riges				
Chronological	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summary	Age	Age	Age	Age
Average	3,459	4,891	9,984	12
Maximum	8,126	31,193	352,962	13
Minimum	-445	1	2	11
Difference	8,571	31,192	352,960	2
		Table 19		

208Pb/232Th Ages Versus Rb/Sr Ages

Another set of dates ⁴⁰ in the essay [Table 20] give dates as high as 82 billion years old.

<u> Uranium/Thorium/Lead - Ages Summary</u>				
Summary	²⁰⁶ Pb/ ²³⁸ U ²⁰⁷ Pb/ ²³⁵ U ²⁰⁸ Pb/ ²³² Th			
Average	1,540	46	7,687	
Maximum	20,209	486	82,030	

Minimum	1	0	3	
Difference	20,208	486	82,027	
Table 20				

The Influence of High U-Th Inclusions

This dating was done in 1998 by scientists from Zurich, Switzerland. According to the article: "The U-Th-Pb data from the bulk dissolutions are highly complex and yield apparent ages ranging from 1000 Ma to 30 Ma." ⁴¹ If we run the Pb/Th ratios ⁴² through Isoplot we see that the dates vary from 300 to over 14,000 million years old [Table 21].

Dating	206Pb/238U	208Pb/232Th	Pb207/Pb206
Summary	Age	Age	Ages
Average	5,342	3,579	4,709
Maximum	29,040	14,316	5,000
Minimum	270	288	3,924
Std Deviation	9,042	5,192	368
Table 21			

Uranium/Thorium/Lead - Ages Summary

If we run another set of Pb/Th ratios ⁴³ through Isoplot we see that the dates vary from 160 to over 37,000 million years old [Table 22].

Dating	206Pb/238U	208Pb/232Th	Pb207/Pb206	
Summary	Age	Age	Ages	
Average	1,621	4,084	4,180	
Maximum	14,008	37,154	5,042	
Minimum	177	161	1,325	
Std Deviation	3,931	11,000	1,386	
Table 22				

Uranium/Thorium/Lead - Ages Summary

Table 22

U, Th And Pb Isotope Compositions

These samples were dated in 2009 by scientists from the Arthur Holmes Isotope Geology Laboratory, Department of Earth Sciences, Durham University. ⁴⁴ According to the article: "Detailed petrographic and geochemical descriptions of the samples presented here can be found elsewhere" ⁴⁵ If we examine what these other people ⁴⁶⁻⁴⁹ have said about the same rock formation the consensus is that it is three million years old. If we run the Pb/Th ratios ⁵⁰ through Isoplot we see that the dates vary from 2,000 to over 92,000 million years old [Table 23].

<u>Uranium/Thorium/Lead - Ages Summary</u>			
Dating	232Th/208Pb	238U/206Pb	207Pb/206Pb
Summary	Age	Age	Age
Average	8,097	4,271	4,915
Maximum	92,495	18,639	5,008
Minimum	1,939	1,437	4,871
Difference	90,556	17,202	137
Table 23			

232Th/208Pb	238U/206Pb	207Pb/206Pb
Age	Age	Age
92,495	18,639	5,008
73,503	15,307	5,001
42,038	10,772	5,000
29,253	10,312	4,996
13,018	9,291	4,984
10,956	5,625	4,964
10,621	4,508	4,959
10,022	3,767	4,949
· · ·	Table 24	· · · ·

Uranium/Tho	orium/Lead –	<u>Maximum Ages</u>

U-Th-Pb Isotope Data According to the article: "In contrast to the apparent ²⁰⁷Pb-²⁰⁶Pb ages, the minimum depositional age of the Warrawoona Group is 3,426Ma based on a U-Pb zircon age from the Panorama Formation." ⁵¹ If we run the Pb/Th ratios ⁵² through Isoplot we see that the dates vary from 25,000 to over 100,000 million years old [Table 25]. In Table 26 we can see the maximum ages for each dating method.

Uranium/Inorium/Lead - Ages Summary				
Dating	207Pb/206Pb	206/Pb/238U	208Pb/232Th	
Summary	Age	Age	Age	
Average	5,325	15,192	56,976	
Maximum	5,403	31,005	100,601	
Minimum	5,222	7,138	24,980	
Std Deviation	52	6,421	22,417	
T-11-25				

тт /m • /т . . C,

Table 25	
----------	--

Uranium/Thorium/Lead – Maximum Ages

207Pb/206Pb	206Pb/238U	208Pb/232Th
Age	Age	Age
5403	31,005	100,601
5395	20,343	84,457
5390	19,584	73,968
5351	17,306	67,423
5339	17,088	58,353
5332	13,410	57,116
5328	13,022	55,311
5315	11,479	51,607
5298	11,353	44,439
5296	10,652	39,090
5289	9,926	26,361
5269	7,138	24,980
	Table 26	

Evolution Of Reunion Hotspot Mantle

According to the article: "In the same context, the Trend 1 data imply that (1) the isotopic composition of the Reunion end-member has changed relatively little in the last 66 m.y." ⁵³ If we run the Pb/Th ratios ⁵⁴ through Isoplot we see that the dates vary from 5,000 to over 13,000 million years old [Table 27]. In Table 28 we can see the maximum ages for the Thorium/Lead dating method.

Oramum/ Inorium/Leau - Ages Summary				
Dating	238U/206Pb	232Th/208Pb	207Pb/206Pb	
Summary	Age	Age	Age	
Average	4,449	8,079	4,976	
Maximum	6,285	13,287	5,016	
Minimum	3,010	5,641	4,953	
Std Deviation	916	2,086	18	

Uranium/Tharium/Load Ages Summary

<u> Thorium/Lead – Maximum Ages</u>				
Age	Age	Age	Age	
13,287	8,725	7,363	6,540	
11,832	8,609	7,362	6,479	
11,017	7,541	7,080	6,323	
10,357	7,517	7,017	5,660	
9,101	7,446	6,679	5,641	
T-11- 10				

Table 27

Table 28

Continental Growth 3.2 Gyr Ago

According to the article the rock formation is 3,200 million years old. ⁵⁵ If we run the Pb/Th ratios ⁵⁵ through Isoplot we see that the dates vary from negative 24,000 to over 11,000 million years old [Table 29]. In Table 30 we can see the maximum ages for the Thorium/Lead dating method.

<u>Uranium/Thorium/Lead - Ages Summary</u>				
Summary	208Pb/232Th	238U/206Pb	207Pb/206Pb	
Average	3,273	3,300	3,296	
Maximum	11,517	4,463	3,897	
Minimum	-24,295	1,560	2,667	
Difference	35,813	2,902	1,229	
Table 29				

Age	Age	Age	Age	Age
11,517	5,322	5,083	4,668	4,601
6,027	5,289	4,776	4,662	-366
5,806	5,130	4,709	4,638	-2,485
5,704	5,095	4,704	4,614	-24,295
5,568	5,085	4,690	4,610	-24,295
Table 30				

Uranium-Lead Zircon Ages If we run the Pb/Th ratios ⁵⁶ through Isoplot we see that the dates vary from 6,000 to over 55,000 million years old [Table 31]. In Table 32 we can see the maximum ages for each dating method.

<u>Oramuni/ Inoriuni/Leau - Ages Summary</u>				
Dating	206Pb/238U	208Pb/232Th	207Pb/206Pb	
Summary	Age	Age	Age	
Average	11,159	17,193	4,933	
Maximum	23,421	55,110	4,997	
Minimum	3,108	6,130	4,799	
Std Deviation	6,223	13,524	59	
<u>Table 31</u>				

Uranium/Thorium/Lead - Ages Summary

Uranium/Thorium/Lead – Maximum Ages

206Pb/238U	208Pb/232Th	207Pb/206Pb
Age	Age	Age
23,421	55,110	4,997
20,387	29,742	4,991
18,909	27,889	4,981
17,143	27,051	4,976
16,784	21,318	4,972
15,320	19,224	4,969
12,851	18,091	4,965
12,012	17,944	4,957
10,579	16,474	4,953
9,677	15,059	4,949
9,424	14,779	4,947
9,099	13,374	4,945
9,044	11,951	4,925
8,094	10,783	4,921
6,776	9,336	4,915
5,719	8,644	4,910
5,500	8,058	4,892
•	Table 32	

Thorium/Lead - Maximum Ages

Age	Age	Age	Age
55,110	19,224	14,779	8,644
29,742	18,091	13,374	8,058
27,889	17,944	11,951	6,721
27,051	16,474	10,783	6,185
21,318	15,059	9,336	6,130
-	Tabla	33	•

The Pilbara Craton in Western Australia

According to the article the rock formation is 3,200 million years old. ⁵⁷ If we run the Pb/Th ratios ⁵⁸ through Isoplot we see that the dates vary from 2,000 to over 8,000 million years old [Table 34]. In Table 35 we can see the maximum ages for the Thorium/Lead dating method.

<u> Thorium/Lead - Ages Summary</u>		
Average	4,853	
Maximum	8,728	
Minimum	2,792	
Std Deviation	1,040	
Table 34		

<u> Thorium/Lead – Maximum Ages</u>

Age	Age	Age	Age	Age
8,728	6,241	5,721	5,430	5,058
8,296	6,191	5,643	5,417	5,042
7,017	6,076	5,578	5,288	5,032
6,433	5,786	5,533	5,171	5,027
6,431	5,759	5,522	5,138	4,999
		Table 35		

If we run another set of Pb/Th ratios ⁵⁹ through Isoplot we see that the dates vary from 500 to over 17,000 million years old [Table 36]. In Table 37 we can see the maximum ages for the Thorium/Lead dating method.

<u>Uranium/Thorium/Lead - Ages Summary</u>			
Dating	207Pb/235U	206Pb/238U	208Pb/232Th
Summary	Age	Age	Age
Average	2,955	2,956	6,286
Maximum	4,220	8,073	17,500
Minimum	1,921	1,074	535
Std Deviation	392	1,019	3,196

<u> Table 36</u>

<u> Thorium/Lead – Maximum Ages</u>

Age	Age	Age	Age	
17,500	8,891	7,493	5,743	
13,259	8,768	7,443	5,594	
13,100	8,689	7,368	5,512	
12,821	8,343	7,343	5,512	
12,662	8,320	7,240	5,455	
12,212	8,247	7,192	5,432	
11,163	8,232	7,148	5,255	
10,959	8,197	7,047	5,253	
10,783	8,064	6,478	5,229	
10,668	8,013	6,270	5,154	
10,384	7,949	6,199	5,148	
9,945	7,947	6,152	5,135	
9,580	7,861	6,083	5,115	
9,124	7,702	6,052	5,047	
8,908	7,692	5,885	5,033	
8,905	7,612	5,803	4,889	
Table 37				

Timing of Sedimentation, Metamorphism, and Plutonism

According to the article the rock formation is 478 million years old. ⁶⁰ If we run the Pb/Th ratios ⁶¹ through Isoplot we see that the dates vary from 500 to over 80,000 million years old [Table 38]. In Table 39 we can see the maximum ages for the Thorium/Lead dating method.

	<u>Thoriu</u>	<u>m/Lead - A</u>	<u>ges Summa</u>	<u>iry</u>
	А	verage	19,539	
	Μ	aximum	80,532	
	Μ	inimum	489	
	Std	Deviation	27,260	
		Table .	<u>38</u>	
	Thoriu	m/Lead – M	laximum A	ges
A	ge	Age	Age	Age
80,	532	66,448	51,879	24,604
74,	016	65,076	51,751	16,809
70,	713	65,000	51,545	15,748
69,	057	61,342	34,766	15,365
68,	831	60,335	31,045	13,384
68,	503	58,364	28,397	11,945
67,	672	56,792	24,733	9,477
		Table (39	

U-Th and U-Pb Systematics in Zircons

According to the article: "At Taupo, the zircon model ages range from <20 ka to >500 Ma." ⁶² If we run the Pb/Th ratios ⁶³ through Isoplot we see that the dates vary from 11,000 to over 41,000 million years old [Table 40]. In Table 41 we can see the maximum ages for the Thorium/Lead dating method.

Thorium/Lead - Ages Summary		
Average	22,847	
Maximum	41,460	
Minimum	11,390	
Std Deviation	6,191	
Table 40		

	<u>Thorium/Lead – Maximum Ages</u>				
Age	Age	Age	Age	Age	
41,460	26,447	23,441	21,348	18,534	
34,824	25,988	23,025	20,730	18,140	
33,392	25,525	22,704	19,977	17,701	
29,182	24,858	22,560	19,950	17,357	
29,126	24,325	22,493	19,738	16,455	
28,671	24,160	22,138	19,422	16,221	
27,733	23,992	21,885	19,360	15,726	
27,587	23,665	21,877	19,307	15,301	
26,533	23,448	21,390	19,024	11,390	
<u> </u>	•	Table 41	• •	· ·	

Hydrothermal Zebra Dolomite

According to the article the rock formation is 416 million years old. ⁶⁴ If we run the Pb/Th ratios ⁶⁵ through Isoplot we see that the dates vary from 6,000 to over 55,000 million years old [Table 42]. In Table 43 we can see the maximum ages for the Thorium/Lead dating method.

Dating	Pb206/U238	Pb208/Th232	Pb207/Pb206
Summary	Age	Age	Age
Average	11,353	17,193	4,933
Maximum	23,421	55,110	4,997
Minimum	1,715	6,130	4,799
Std Deviation	5,055	11,459	53

Uranium/Thorium/Lead - Ages Summary

Table 42

<u> Thorium/Lead – Maximum Age</u>			
Age			
14,779			
13,374			
11,951			
10,783			
9,336			
8,644			
8,058			
6,721			
6,185			
6,130			
Table 43			

If we run the Pb/Th ratios 65 in the second spreadsheet table through Isoplot we see that the dates vary from 6,000 to over 270,000 million years old [Table 44]. In Table 45 we can see the maximum ages for the Thorium/Lead dating method.

Thorium/Lead - Ages Summary		
Average	90,690	
Maximum	277,727	
Minimum	6,643	
Std Deviation	47,209	
Table 44		

<u> Thorium/Lead – Maximum Ages</u>

Billion Years	Quantity	Billion Years	Quantity
0 To 20	2	130 To 140	6
20 To 30	1	140 To 150	6
30 To 40	22	150 To 160	2
40 To 50	19	160 To 170	6
50 To 60	33	170 To 180	1
60 To 70	17	180 To 190	5
70 To 80	23	190 To 200	1
80 To 90	18	200 To 210	3
90 To 100	14	210 To 220	1
100 To 110	18	220 To 230	2
110 To 120	21	240 To 250	1
120 To 130	13	270 To 280	2

Table 45

Origin of Indian Ocean Seamount Province

According to the article the rock formation is 6 million years old. ⁶⁶ If we run the Pb/Th ratios ⁶⁷ through Isoplot we see that the dates vary from 2,000 to over 28,000 million years old [Table 46]. In Table 47 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary

Dating	207Pb/206Pb	206Pb/238U	208Pb/232Th		
Summary	Age	Age	Age		
Average	5,015	5,191	7,740		
Maximum	5,087	18,210	28,677		
Minimum	4,921	890	1,943		
Std Deviation	48	3,634	4,590		

<u>Table 46</u>

Age	Age	Age	Age	Age
28,677	10,719	9,515	7,923	6,512
12,829	10,626	9,506	7,669	6,333
12,028	10,425	9,146	7,407	6,199
11,798	10,378	9,073	7,380	6,198
11,552	10,240	9,019	7,380	6,085
11,317	10,201	8,916	7,367	6,051
11,113	10,082	8,298	7,030	5,999
10,773	10,055	8,111	6,910	5,493
10,725	9,678	8,001	6,651	5,418

Geochemistry Geophysics Geosystems

According to the article the rock formation is 100 million years old. ⁶⁸ If we run the Pb/Th ratios ⁶⁸ through Isoplot we see that the dates vary from 5,000 to over 82,000 million years old [Table 48]. In Table 49 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary

Dating	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th
Summary	Age	Age	Age	Age
Average	15,345	7,019	4,936	39,068
Maximum	38,340	10,872	5,043	82,865
Minimum	3,125	4,385	4,760	5,577
Std Deviation	9,657	1,750	63	27,390
Table 48				

<u> Thorium/Lead – Maximum Ages</u>

Age	Age	Age
82,865	51,821	16,417
81,065	45,608	7,512
75,644	45,035	6,840
72,833	42,233	6,626

64,393	39,019	6,322		
58,240	27,562	5,579		
57,334	23,571	5,577		
56,640	19,834			
Table 49				

Continental Lithospheric Contribution

According to the article the rock formation is 72 million years old. ⁶⁹ If we run the Pb/Th ratios ⁶⁹ through Isoplot we see that the dates vary from 5,000 to over 82,000 million years old [Table 50]. In Table 51 we can see the maximum ages for the Thorium/Lead dating method.

Dating Methods - Ages Summary				
Dating	207Pb/206Pb	208Pb/232Th	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	4,920	6,126	4,539	-47
Maximum	4,949	10,084	7,723	0
Minimum	4,894	2,616	2,306	-75
Difference	55	7,467	5,417	75
T-11-50				

<u>Table 50</u>

<u>Thorium/Lead – Maximum Ages</u>

Age
10,084
9,320
8,101
7,502
7,080
6,891
6,655
6,313
5,830
5,755
5,029
Table 51

Cenozoic Volcanic Rocks of Eastern China

According to the article the rock formation is Quaternary in age. ⁷⁰ If we run the Pb/Th ratios ⁷¹ through Isoplot we see that the dates vary from 4,000 to over 17,000 million years old [Table 52]. In Table 53 we can see the maximum ages for the Thorium/Lead dating method.

Dating Methods - Ages Summary					
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr	
Summaries	Age	Age	Age	Age	
Average	5,057	5,296	10,589	-1,502	
Maximum	5,120	8,584	17,171	0	

Minimum	5,002	1,136	4,042	-3,593	
Difference	118	7,448	13,129	3,593	
Table 52					

<u> Thorium/Lead – Maximum Ages</u>					
Age	Age	Age	Age		
17,171	13,322	9,737	7,968		
15,343	13,202	9,707	7,830		
15,299	13,001	9,049	7,250		
15,136	11,119	8,420	6,972		
15,054	10,873	8,419	6,628		
13,476	10,758	8,368	6,577		
Table 53					

Sr, Nd, and Pb isotopes

According to the article the rock formation is 2,900 million years.⁷² If we run the Pb/Th ratios⁷³ through Isoplot we see that the dates vary from 79 to over 94,000 million years old [Table 54]. In Table 55 we can see the maximum ages for the Thorium/Lead dating method.

<u>Uranium/Thorium/Lead - Ages Summary</u>					
Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb		
Summaries	Age	Age	Age		
Average	14,198	7,366	5,014		
Maximum	94,396	22,201	5,077		
Minimum	79	1,117	4,945		
Difference	94,317	21,083	131		
T-11-54					

Table 54

<u>Thorium/Lead – Maximum Ages</u>

Age	Age	Age	Age
94,396	39,267	10,595	8,171
90,683	26,266	10,284	7,789
74,639	18,334	9,328	7,638
58,153	16,357	8,821	7,375
55,324	14,250	8,771	7,317
45,242	11,215	8,403	5,759
	Tal	ole 55	•

An Extremely low U/Pb Source

According to the article: "The Rb-Sr data yield an internal isochron age of $3,840 \pm 32$ Ma." ⁷⁴ If we run the Pb/Th ratios ⁷⁵ through Isoplot we see that the dates vary from 5,000 to over 13,000 million years old [Table 56]. In Table 57 we can see the maximum ages for the Thorium/Lead dating method.

•••	Uraniun	1/Thorium	n/Lead -	Ages	Summary	
-----	---------	-----------	----------	------	---------	--

	Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U	87Rb/86Sr
S	Summaries	Age	Age	Age	Age	Age

Average	4,673	8,035	10,148	4,546	3,619
Maximum	5,018	56,923	65,286	8,128	5,385
Minimum	3,961	1,477	2,542	2,784	721
Difference	1,057	55,445	62,744	5,344	4,664

The	Table 56					
Age	Age	Age	Ages Age			
65,286	14,430	9,094	5,401			
33,898	14,410	6,520	5,396			
25,013	13,107	6,166	5,365			
22,178	12,738	6,121	5,098			
21,204	11,641	5,671	5,035			
17,611	11,174	5,408	4,678			
	Table 57					

<u>Table 57</u>

Petrogenesis and Origins of Mid-Cretaceous

According to the article: "The basal lava flow displays a sharp contact with the underlying terrestrial sediments, which in turn rest on shallow marine sediments of Ngaterian age (100.2-95.2Ma)." ⁷⁶ If we run the Rb/Sr ratios ⁷⁷ through Microsoft Excel we see that the dates vary from 15 to 85 million years old [Table 58]. If we run the Pb/Th ratios ⁷⁸ through Isoplot we see that the dates vary from 4,000 to over 10,000 million years old [Table 58]. In Table 59 we can see the maximum ages for the Thorium/Lead dating method.

Dating Methods - Ages Summary

Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U
Summaries	Age	Age	Age	Age	Age
Average	4,876	4,416	59	6,333	3,515
Maximum	4,945	5,159	85	10,716	5,717
Minimum	4,836	4,088	15	4,785	2,712
Difference	109	1,071	70	5,931	3,005
			= 0		

Та	ble	58

<u> Thorium/Lead – Maximum Ages</u>				
Age	Age	Age		
10,716	6,355	5,655		
7,520	6,354	5,598		
7,259	6,138	5,519		
7,145	6,032	5,515		
6,559	5,972	5,505		
6,511	5,972	5,210		
Table 59				

Conclusion

If we use the standard formula ⁷⁹ for calculating Rb/Sr ages we find on many occasions that the Uranium/Thorium/Lead dates are all wrong! Evolutionist Brent Dalrymple states:

"Several events in the formation of the Solar System can be dated with considerable precision." 80

Looking at some of the dating it is obvious that precision is much lacking. He then goes on:

"Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ⁸¹

I his book he gives a table 82 with radiometric dates of twenty meteorites. If you run the figures through Microsoft Excel, you will find that they are 98.7% in agreement. There is only a seven percent difference between the ratio of the smallest and oldest dates. As we have seen in this essay, such a perfect fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best.

Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

Mathematical Calculations and hyperlinks to the Adobe Acrobat files of each of the Geology Magazine articles cited are on the following Microsoft Excel Spreadsheets:

Geo_Dating\Rubidium\Rubidium_Strontium.xlsm Geo_Dating\Lead_206_207\Master_Index.xlsm

Install Isoplot Version 4 to make the formulas work http://www.bgc.org/isoplot_etc/isoplot.html

- 1 <u>http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html</u> The age of 10 to 15 billion years for the age of the Universe.
- 2 <u>http://en.wikipedia.org/wiki/Age of the universe</u>
- 3 <u>http://arxiv.org/pdf/1001.4744v1.pdf</u> Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
- 4 <u>http://en.wikipedia.org/wiki/Age_of_the_Earth</u>
- 5 <u>http://sp.lyellcollection.org/content/190/1/205</u> The age of the Earth, G. Brent Dalrymple Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
- 6 The age of the earth, Gérard Manhes Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370–382
- 7 <u>http://www.bgc.org/isoplot_etc/isoplot.html</u>
- 8 Tracing the Indian Ocean Mantle, Journal Of Petrology, 1998, Volume 39, Number 7, Pages 1288
- 9 Reference 8, Page 1292-1294
- 10 Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711

- 11 Reference 10, Page 729-730
- 12 Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 556
- 13 Reference 12, Table 1, Page 558
- 14 Reference 12, Page 566
- 15 Reference 12, Page 575-576
- 16 Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 667
- 17 Reference 16, Table 5, Page 676, 677
- 18 Reference 16, Table 9, Page 684
- 19 Evidence for a Widespread Tethyan Upper Mantle, Journal Of Petrology, 2005, Volume 46, Number 4, Pages 830
- 20 Reference 19, Charts, Pages 843, 844, 845, 849
- 21 Reference 19, Pages 832-834
- 22 Reference 19, Pages 835-837
- 23 Post-Collisional Potassic and Ultrapotassic Magmatism, Journal Of Petrology, 1999, Volume 40, Number 9, Pages 1399
- 24 Reference 23, Page 1403
- 25 Reference 23, Page 1414
- 26 Reference 23, Page 1415
- 27 Continental Lithospheric Contribution to Alkaline, Journal Of Petrology, 1997, Volume 38, Number 1, Pages 115
- 28 Reference 27, Pages 124, 125
- 29 Pin Pricking The Elephant, Geological Society Of London, Special Publications, 2004, Volume 229, Pages 139, 140, 144
- 30 Reference 29, Pages 138, 143
- 31 Reference 29, Pages 143
- 32 Chronology And Geochemistry Of Lavas, Journal Of Petrology, April 11, 2012, Pages 1-32 Pages 1
- 33 Reference 32, Pages 5, 6, 7, 14
- 34 Reference 32, Pages 12
- 35 Ion microprobe U-Th-Pb dating, Meteoritics & Planetary Science, 2004, Volume 39, Number 12, Pages 2033
- 36 Reference 35, Pages 2036

- 37 U–Th–Pb Dating Of Secondary Minerals, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 2078
- 38 Reference 37, Pages 2072, 2073
- 39 Reference 37, Pages 2074
- 40 Reference 37, Pages 2080, 2081
- 41 The Influence of High U-Th, Geochimica et Cosmochimica Acta, 1998, Volume 62, Numbers 21/22, Pages 3527
- 42 Reference 41, Pages 3529
- 43 Reference 41, Pages 3531
- 44 U, Th And Pb Isotope Compositions, Geochimica et Cosmochimica Acta, 2009, Volume 73, Pages 469
- 45 Reference 44, Pages 471
- 46 Earth Planetary Science Letters, 1987, Volume 82, Pages 121–135.
- 47 Chemical Geology, 2003, Volume 200, Pages 71–87.
- 48 Journal Petrology, 1993, Volume 34, Pages 125–172.
- 49 Geochimica et Cosmochimica Acta, 2007, Volume 71, Pages 1290–1311
- 50 Reference 44, Pages 475, 476
- 51 U-Th-Pb Isotope Data, Earth and Planetary Science Letters, 2012, Volume 319-320, Pages 200
- 52 Reference 51, Pages 199
- 53 Evolution Of Reunion Hotspot Mantle, Earth and Planetary Science Letters, 1995, Volume 134, Pages 169
- 54 Reference 53, Page 174
- 55 Continental Growth 3.2 Gyr Ago, Nature, 2012, Volume 485, Pages 627–630, http://www.nature.com/nature/journal/v485/n7400/extref/nature11140-s3.xls
- 56 Uranium-Lead Zircon Ages, <u>http://pubs.usgs.gov/of/2008/1142/tables/table04.xls</u>
- 57 Pilbara Craton in Western Australia, http://www.geo.uu.nl/~kikeb/thesis/thesis/thesis_frame.html
- 58 <u>http://www.geo.uu.nl/~kikeb/thesis/database/upb/KB746.xls</u>
- 59 www.geo.uu.nl/~kikeb/thesis/database/upb/KB770.xls
- 60 Timing of sedimentation, metamorphism, and plutonism, http://geosphere.gsapubs.org/content/3/6/683.abstract
- 61 http://geosphere.gsapubs.org/content/suppl/2009/02/18/3.6.683.DC1/00138 App3.xls

- 62 U–Th and U–Pb Systematics in Zircons, Journal Petrology, January 1, 2005, volume 46, Number 1, Pages 27
- 63 http://petrology.oxfordjournals.org/content/suppl/2004/09/24/egh060.DC1/Table_3.xls
- 64 Hydrothermal Zebra Dolomite, Geosphere, October 2010, Volume 6, Number 5, Pages 663-690,
- 65 http://geosphere.gsapubs.org/content/suppl/2010/09/29/6.5.663.DC1/530_supp1.xls
- 66 Origin of Indian Ocean Seamount Province, Nature Geoscience, 2011, Volume 4, Pages 883-887
- 67 www.nature.com/ngeo/journal/v4/n12/extref/ngeo1331-s2.xls
- 68 Geochemistry Geophysics Geosystems, 2003, Volume 4, Page 1089, http://earthref.org/ERDA/download:147/
- 69 Continental Lithospheric Contribution, Journal Of Petrology, 1997, Volume 38, Number 1, Pages 124
- 70 Cenozoic Volcanic Rocks of Eastern China, Earth and Planetary Science Letters, Volume 105 (1991), Pages 154
- 71 Reference 70, Pages 156, 157
- 72 Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113 (1992), Pages 107
- 73 Reference 72, Page 110
- 74 An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687
- 75 Reference 74, Pages 4690, 4691
- 76 Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51, Number 10, Pages 2005
- 77 Reference 76, Page 2024
- 78 Reference 76, Page 2025
- 79 Isotopes in the Earth Sciences, Edited By Robert Brown, 1988, Elsevier, 1994, Chapman and Hall Publishers, Page 167 <u>http://books.google.de/books?id=k90iAnFereYC&pg=PA162#v=onepage&q&f=false</u>
- 80 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.
- 81 Reference 81, Page 23
- 82 Reference 81, Page 287

www.creation.com