Radiometric Dating Errors

A Rebuttal of Brent Dalrymples Book
"The Age Of The Earth"
By Paul Nethercott, 2013

1 Concordia Isochron Dating
2 Future Radiometric Dating
3 Impossible Radiometric Dates
4 Meteorite Dating
5 Negative Dating
6 The Neodymium Samarium Dating Method
7 Rocks Older Than The Galaxy
8 Rocks Older Than The Solar System
9 Rocks Older Than The Earth
10 Rocks Older Than The Universe
11 The Rubidium Strontium Dating Method
12 Rubidium Strontium Dating
13 The Thorium Lead Dating Method
14 The Uranium 235 Dating Method
15 The Uranium 238 Dating Method
16 Very Old Rocks

Concordia Isochron Dating
 By Paul Nethercott
 May 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

Age and Mineralogy of Supergene Uranium

Theses rocks from the Bohemian Massif, South East Germany ${ }^{8}$ were dated in 2010 using the Uranium-Lead dating method. The table in the essay has three columns of isotopic ratios, ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U},{ }^{207} \mathrm{~Pb} / /^{235} \mathrm{U}$ and ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$. You will notice in Table 4 the original article ${ }^{9}$ that there are dates besides the ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ and ${ }^{207} \mathrm{~Pb} /{ }^{235} \mathrm{U}$ ratios but no dates beside the ${ }^{207} \mathrm{~Pb} / /^{206} \mathrm{~Pb}$ ratios. The first two sets of ratios and dates agree with each other between 94 and 101 percent accuracy. If we use the computer program Isoplot ${ }^{10}$ and calculate the ages of the ${ }^{207} \mathrm{~Pb}{ }^{206} \mathrm{~Pb}$ ratios we see why not dates have been put beside them. In Table $\mathbf{1}$ we can see that many dates are negative. That is logically impossible. How can the rock have formed millions of years in the future?

Table 1

Sample	Pb-206/207	Sample	Pb-206/207
Name	Negative Ages	Name	Negative Ages
A30	-29	A06	-29
A35	-8	A10	-45
A04	-18	A11	-83
A07	-8	A12	-23
A10	-8	A13	-133
A11	-13	A17	-116
A18	-8	A19	-72
A19	-18	A21	-2
A20	-8	A26	-34
		A27	-13
		A29	-45
		A39	-8
		A40	3
	A41	-50	

In Table 2 we can see that the $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ dates are between 1,000 to 21,000 percent discordant when compared to the two Uranium-Lead dating methods. Here is just one of many times where geology journals use selective evidence to try and prove evolution. If the third column or ratios were dated and added to the essay you can see how silly it would look.

Table 2

Sample	Difference	Sample	Difference
Name	Percent	Name	Percent
A26	$\mathbf{1 , 0 8 7}$	A01	$\mathbf{1 , 0 0 6}$
A29	$\mathbf{1 , 1 9 2}$	A16	1,073
A25	$\mathbf{1 , 2 0 2}$	A32	1,891
A41	$\mathbf{1 , 3 3 8}$	A31	2,067
A07	$\mathbf{1 , 9 6 4}$	A30	3,070
A19	2,385	A29	3,539
A10	2,389	A33	10,452
A22	2,551	A36	16,112
A18	3,126		
A30	3,129		
A24	3,360		
A09	3,612		
A13	4,616		
A05	4,881		
A06	4,982		
A11	5,350		
A25	5,479		
A08	5,628		
A42	$\mathbf{6 , 2 1 5}$		
A04	6,551		
A22	7,031		
A43	10,253		
A17	10,673		
A21	15,256		
A20	21,500		

$\underline{207 \mathrm{~Pb}-206 \mathrm{~Pb} \text { and } 40 \mathrm{Ar}-39 \mathrm{Ar} \text { ages from SW Montana }}$

These rocks from North America were dated in 2002 using both ${ }^{11}$ Potassium-Argon and Lead-Lead dating methods. Again the no dates beside the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios. If we add dates we soon see why. The first table in his article has dates ${ }^{12}$ using the ${ }^{40} \mathrm{Ar}-{ }^{39} \mathrm{Ar}$ dating method. The third table ${ }^{13}$ has the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios.

Table 3

Sample	K-Ar Dating	K-Ar Dating	Pb Dating	Pb Dating
Name	Max Age	Min Age	Max Age	Min Age
RRCR2	1,818	1,695	4,471	1,895
RRSW1	1,806	1,740	5,011	4,032
HLM2	1,853	1,620	4,522	1,848
TRMR2	1,729	1,199	5,049	2,644

If we use the computer program Isoplot and calculate the ages of the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios we see why not dates have been put beside them. The Potassium-Argon and Lead-Lead dating methods are extremely discordant. The author's use of data is very selective. Dates that agree are added and those that do not are omitted. This happens over and over in geology magazines. We can see from the table below that many dates are older than the evolutionist view of the age of Earth. How can such an absurdity be possible? How can the Earth be older than itself?

Table 4

Sample	Million	Age
Name	Years	Category
RRSW1	5,005	Older Than The Solar System
RRSW1	5,011	Older Than The Solar System
RRSW1	$\mathbf{4 , 9 3 9}$	Older Than Earth
TRMR2	5,015	Older Than The Solar System
TRMR2	5,049	Older Than The Solar System
${ }^{207} \mathbf{P b} /{ }^{206} \mathbf{P b}$ Dates		

Uranium-Thorium-Lead Dating

This dating ${ }^{14}$ was done in 1999 on meteorite samples by the Department of Earth and Planetary Sciences, Hiroshima University in Japan. Below we can see the isotopic ratios take from Table 2 in the original article. ${ }^{15}$ Using the computer program Isoplot we calculate the ages of the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios we see why not dates have been put beside them.

Table 5

Pb-207	Million	Age
Pb-206	Years	Category
0.889	5,071	Older Than Solar System
0.916	5,114	Older Than Solar System
0.876	5,051	Older Than Solar System
0.869	5,039	Older Than Solar System
0.922	5,123	Older Than Solar System
0.867	5,036	Older Than Solar System

$\mathbf{5 , 0 5 1}$ to $\mathbf{5 , 1 2 3}$ million years old.

According to the Iscohron [1, 2 and 3] diagrams in the article ${ }^{16}$ the meteorites are only supposed to be 200 million years old! This means that the dates are 4,800 million years in error. The ratio of the so called "true" age versus the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ age is 25 to 1 . The author deliberately chose not to put the dates beside the isotopic ratios because they would show how utterly ridiculous the whole system is. According to the Iscohron diagram in the article, the maximum error level is only 83 million years. The error level is 4934 years if we compare it to the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ age. This means the error level is 59 times in error.

Pb-Pb dating of Chondrules

The meteorite samples ${ }^{17}$ were dates in 2009 by scientists form the Geological Museum, University of Copenhagen and The University of Texas at Austin. If we use Isoplot and run some of the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios given in the article ${ }^{18}$ through Microsoft Excel we see that many of the ratios produce ages over 5 billion years old.

Below we can see a Concordia diagram taken from the article ${ }^{19}$ that shows the age of the rocks to be 4,565 million years old. As you can see the diagram claims that the error margins is only 810,000 years! If we add the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios dates we can see that the diagram is out by 550 million years. That means the error margin given in the diagram is 677 times to short!

Diagram 2

Table 6

Sample	Age	Age
Number	Million Years	Category
C2-L1	5,194	Older Than Solar System
C2-L2	5,190	Older Than Solar System
C2-L3	5,089	Older Than Solar System
C2-L6	5,020	Older Than Solar System
C4	5,174	Older Than Solar System
C4-L6	5,013	Older Than Solar System
C4-L7	5,094	Older Than Solar System
C4-L8	5,051	Older Than Solar System
C7	5,091	Older Than Solar System
C7-L7	5,032	Older Than Solar System
C7-L8	5,021	Older Than Solar System
C12-10	5,050	Older Than Solar System
C12-L2	5,063	Older Than Solar System
C12-L3	5,206	Older Than Solar System
C12-L5	5,002	Older Than Solar System

5,002 to 5,206 million years old.

$\underline{\mathrm{Pb}-\mathrm{Pb} \text { Dating Constraints }}$

This dating ${ }^{20}$ was done in 2007 on meteorite samples by the Washington State University, Department of Geology. We can see from table seven which data in my essay the data was obtained from in Audrey Bouvier's essay.

Table 7

Her Essay	My Essay
Table 2, Page 1587	Table 8
Table 3, Page 1588	Table 9
Table 4, Page 1589	Table 10
Table 5, Page 1590	Table 11
Table 6, Page 1590	Table 12

One of the concordia diagrams ${ }^{21}$ in the article gives the following data:
Chondrules: $4565.5 \pm 1.2 \mathrm{Ma}$
Pyroxenes: $4564.3 \pm 0.8 \mathrm{Ma}$
Phosphates: $4562.7 \pm 0.7 \mathrm{Ma}$
We are told that the date of 4,565 million years old is only one million years in error at the maximum. If run some of the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios given in the article through Isoplot, we see that many of the ratios produce ages over 5 billion years old. The oldest is 5,379 million years. The error margin given in the article is 814 times in error.

Table 8

Sample	Age	Age
Name	Million Years	Category
Allende, Whole-rock-R0	5,334	Older Than Solar System
CV3, L0	5,325	Older Than Solar System
MNHN, L1	5,250	Older Than Solar System
MNHN, L2	5,258	Older Than Solar System
MNHN, L1	5,296	Older Than Solar System
MNHN, L2	5,029	Older Than Solar System
UCLA, L1	5,244	Older Than Solar System
UCLA, L1	5,244	Older Than Solar System
UCLA, L1	5,245	Older Than Solar System
UCLA, Olivine-R0	5,344	Older Than Solar System
UCLA, L0	5,336	Older Than Solar System
Murchison, Whole-rock-R0	5,333	Older Than Solar System
CM2, L0	5,321	Older Than Solar System
CM2, CAI-R0-Murch	5,238	Older Than Solar System
CM2, L0	5,267	Older Than Solar System
ENSL, Blanke	5,016	Older Than Solar System
Canyon-Diablo, Troilitef	5,379	Older Than Solar System

$\mathbf{5 , 0 1 6}$ to $\mathbf{5 , 3 7 9}$ million years old.

Table 9

Pb-206/Pb-207	Age	Age
Ratio	Million Years	Category
$\mathbf{0 . 8 6 6 6 5}$	5,035	Older Than Solar System
$\mathbf{0 . 8 4 5 1 8}$	5,000	Older Than Solar System
$\mathbf{0 . 8 6 3 0 6}$	$\mathbf{5 , 0 3 0}$	Older Than Solar System
$\mathbf{0 . 8 4 9 8 3}$	$\mathbf{5 , 0 0 8}$	Older Than Solar System
0.96359	5,185	Older Than Solar System
$\mathbf{0 . 9 8 0 8 1}$	5,210	Older Than Solar System
$\mathbf{0 . 9 1 1 2 0}$	5,106	Older Than Solar System
$\mathbf{1 . 0 9 0 6 8}$	5,359	Older Than Solar System
$\mathbf{0 . 8 7 9 5 8}$	5,056	Older Than Solar System
$\mathbf{0 . 9 6 9 0 6}$	$\mathbf{5 , 1 9 3}$	Older Than Solar System

5,000 to 5,359 million years old.

Table 10

Pb-206/Pb-207	Age	Age	
Ratio	Million Years	Category	
0.85705	5,020	Older Than Solar System	
0.85871	5,022	Older Than Solar System	
0.85888	5,023	Older Than Solar System	
0.85681	5,019	Older Than Solar System	
5			

Table 11

Pb-206/Pb-207	Age	Age
Ratio	Million Years	Category
0.90695	5,100	Older Than Solar System
0.86255	5,029	Older Than Solar System
0.85613	5,018	Older Than Solar System
0.86644	5,035	Older Than Solar System
0.92835	5,133	Older Than Solar System
0.91990	5,120	Older Than Solar System
0.92542	5,128	Older Than Solar System
0.90807	5,101	Older Than Solar System
0.90861	5,102	Older Than Solar System

Table 12

Pb-206/Pb-207	Age	Age
Ratio	Million Years	Category
0.88990	5,073	Older Than Solar System
0.87125	5,043	Older Than Solar System
0.89581	5,082	Older Than Solar System
0.89269	5,077	Older Than Solar System
0.85401	5,015	Older Than Solar System
0.89561	5,082	Older Than Solar System
0.98433	5,215	Older Than Solar System
0.92618	5,129	Older Than Solar System
0.99857	5,235	Older Than Solar System
0.95025	5,166	Older Than Solar System
1.01559	5,259	Older Than Solar System

U-Th-Pb Dating of Hydrothermal ore Deposits

This dating ${ }^{22}$ was done in 2010 on rocks from eastern China. If we look at one of the tables ${ }^{23}$ in the original essay we see four columns of isotopic data ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb},{ }^{207} \mathrm{~Pb} /{ }^{235} \mathrm{U},{ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ and ${ }^{208} \mathrm{~Pb} /{ }^{232} \mathrm{Th}$. Three have dates beside them but here are no dates beside the ${ }^{207} \mathrm{~Pb} / /^{206} \mathrm{~Pb}$ ratios. If we run the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios through Isoplot we soon see why there are no dates beside them. According to the Concordia diagrams in the essay ${ }^{24}$ the rocks are supposed to be 137 million years old with an average age of 120 million years.

Table 13

Sample	Maximum	Minimum	Average
Name	Age	Age	Age
TLS01	2,508	272	$\mathbf{9 4 3}$
TLS02	346	8	254
S38	1,682	-294	354
S38	2,508	-139	$\mathbf{8 9 9}$
S39	440	-325	$\mathbf{9 4}$

Table 14

Sample	Maximum	Minimum	Difference	Percentage	Age
Name	Age	Age	Age	Difference	Category
S38-1-a1	12,721	136	12,585	$9,253 \%$	Older Than Galaxy
S38-3-a1	7,663	136	7,527	$5,534 \%$	Older Than Solar System
S38-3-a2	11,457	44	11,413	$25,938 \%$	Older Than Galaxy
S38-3-a3	7,175	130	7,045	$5,419 \%$	Older Than Solar System

Some of the dates listed in the article ${ }^{23}$ are older than the age of the Solar System and Galaxy! The author offers an explanation: "Due to the very low Th contents in the calcite-hosted titanite, no meaningful $208 \mathrm{~Pb} / 232 \mathrm{Th}$ ages were obtained." ${ }^{25}$

U-Th-Pb dating of Yucca Mountain, Nevada

This dating was done ${ }^{26}$ in 2008 by the U.S. Geological Survey office in Denver, Colorado. You will notice in Table 1 the original article ${ }^{27}$ that there are no dates beside the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios. If we use the computer program Isoplot and calculate the ages of the ${ }^{207} \mathrm{~Pb} /^{206} \mathrm{~Pb}$ ratios we see why not dates have been put beside them.

Table 15

Sample	206-Pb/207-Pb	Age
Name	Million Years	Category
HD1939Pb1-Cc	5,474	Older Than Solar System
HD2055Pb6-Cc	5,632	Older Than Solar System
HD2055Pb7-Cc1	5,512	Older Than Solar System
HD2055Pb7-Cc2	5,523	Older Than Solar System
HD2055Pb10-Cc	5,587	Older Than Solar System
HD-2057-Pb1-Cc	7,864	Older Than Solar System
HD-2057-Pb2-Cc	6,577	Older Than Solar System
HD2059Pb4-Cc	7,474	Older Than Solar System
HD2062Pb2-Cc	5,528	Older Than Solar System
HD2062Pb3-Mn	5,450	Older Than Solar System
HD2065Pb4-Cc	7,202	Older Than Solar System
HD2074Pb1-Cc3	6,304	Older Than Solar System
HD2074Pb2-Cc1	7,569	Older Than Solar System
HD2074Pb2-Cc2	6,519	Older Than Solar System
HD2089APb2-Cc	6,973	Older Than Solar System
HD2089APb3-Mn	5,483	Older Than Solar System
HD2092Pb1-Cc	5,567	Older Than Solar System
HD2092Pb1-Mn	5,452	Older Than Solar System
HD2098Pb3-Cc	5,891	Older Than Solar System
HD2109Pb1-Cc	5,806	Older Than Solar System
HD2155Pb1-Cc	6,349	Older Than Solar System
HD2177Pb2-Cc	5,792	Older Than Solar System
HD2177Pb1-Mn	5,452	Older Than Solar System
HD2227Pb1-Cc	6,109	Older Than Solar System
HD2227Pb1-Mn	5,453	Older Than Solar System
HD2231Pb1-Cc	5,472	Older Than Solar System
HD2233Pb2-Ch1	7,933	Older Than Solar System
HD2233Pb2-Ch2	8,186	Older Than Solar System
HD2233Pb3-Ch	7,583	Older Than Solar System
HD2233Pb4-Ch	7,898	Older Than Solar System
	$5,450 ~ t o ~ 8,186 ~ m i l l i o n ~ y e a r s ~ o l d . ~$	

The dates are between 5,450 and 8,186 million years old. The average age is 6,320 million years old. Table 3 in the original article ${ }^{28}$ has dates older than the universe and extreme discordance with up to 2 million percent. The average discordance is 212,000 perecent!

40Ar/39Ar and U-Th-Pb Dating

This meteorite sample ${ }^{29}$ was dated in 1983 by Donald Bogard from the Johnson Space Center, Houston Texas. If we look in Table 5 in the original article we see that there are dates beside the ${ }^{207} \mathrm{~Pb} /{ }^{208} \mathrm{~Pb}$ ratios no dates beside the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios. If we run the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios through Isoplot we see that they uniformly differ with the ${ }^{207} \mathrm{~Pb} /{ }^{208} \mathrm{~Pb}$ dates given in the essay. The author's choice to drop these dates and only have dates beside the ${ }^{207} \mathrm{~Pb} /{ }^{208} \mathrm{~Pb}$ ratios is just an arbitrary choice.

Table 16

Age	Age	Age
Pb-207/208	Pb-207/206	Category
4,560	5,370	Older Than Solar System
4,720	5,364	Older Than Solar System
4,560	5,364	Older Than Solar System
4,450	5,283	Older Than Solar System
4,700	5,371	Older Than Solar System
4,540	5,367	Older Than Solar System
4,410	5,082	Older Than Solar System
4,560	5,368	Older Than Solar System
4,700	5,367	Older Than Solar System
4,500	5,333	Older Than Solar System

Isotopic Lead Investigations

These meteorite samples were dated in 1975 by the Department of Geological Sciences, University of California, Santa Barbara, California. ${ }^{31}$ From Table 2 in the original article we can calculate the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios and then we run them through Isoplot. The ages are consistently older than the age of the Solar System.

Table 17

Sample	Pb 206/207	Age
Name	Ages	Category
$7-1$	5,175	Older Than Solar System
$7-2$	5,300	Older Than Solar System
$7-3$	5,287	Older Than Solar System
$7-4$	5,346	Older Than Solar System
$4-1$	5,337	Older Than Solar System
W-2	5,342	Older Than Solar System
Allende-1	5,297	Older Than Solar System
Allende-2	5,326	Older Than Solar System
Allende	5,262	Older Than Solar System
9-1	5,324	Older Than Solar System
M-2	5,322	Older Than Solar System
9-3	5,339	Older Than Solar System
9-4	5,334	Older Than Solar System
ChL-1 (IC)	5,138	Older Than Solar System
ChL-1 (ID)	5,137	Older Than Solar System
Ch3 (IC)	5,220	Older Than Solar System
Ch3 (ID)	5,227	Older Than Solar System
ChD (IC)	5,103	Older Than Solar System
ChD (ID)	5,099	Older Than Solar System

Conclusion

Prominent evolutionist Brent Dalrymple states:
"Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{33}$
Looking at some of the dating it is obvious that precision is much lacking. He then goes on:
"Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{34}$

The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

http://creation.com/radiometric-dating-questions-and-answers

References

http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html The age of 10 to 15 billion years for the age of the Universe.
http://en.wikipedia.org/wiki/Age_of_the_universe
http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
http://en.wikipedia.org/wiki/Age of the Earth
http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
http://arxiv.org/pdf/astro-ph/0506458v1.pdf
The age of the Galactic disk, By E. F. del Peloso and L. da Silva
Astronomy \& Astrophysics, Manuscript no. 3307, February 2, 2008

Age and mineralogy of supergene uranium
Geomorphology, 2010, Volume 117, Pages 44-65
Reference 8, Page 58
http://www.bgc.org/isoplot_etc/isoplot.html
207Pb-206Pb and 40Ar-39Ar ages from SW Montana
Precambrian Research, 2002, Volume 117, Pages 119-143
Reference 11, Page 128
Reference 11, Page 133
Uranium-Thorium-Lead Dating
Mereoritics And PIanetary Science, 2000, Volume 35, Pages 341-346
Reference 14, Page 342
Reference 14, Page 343, 344
$\mathrm{Pb}-\mathrm{Pb}$ dating of chondrules
Chemical Geology, 2009, Volume 259, Pages 143-151
Reference 17, Page 145
Reference 17, Page 147
$\mathbf{P b}-\mathbf{P b}$ dating constraints
Geochimica et Cosmochimica Acta, 2007, Volume 71, Pages 1583-1604
Reference 20, Page 1596
$\mathrm{U}-\mathbf{T h}-\mathbf{P b}$ dating of hydrothermal ore deposits
Chemical Geology, 2010, Volume 270, Pages 56-67

Reference 22, Page 65
Reference 22, Page 66
Reference 22, Page 62
U-Th-Pb dating of Yucca Mountain, Nevada
Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 2067-2089
Reference 26, Pages 2072, 2073
Reference 26, Pages 2080
40Ar/39Ar and U-Th-Pb Dating
Earth and Planetary Science Letters, 1983, Volume 62, Pages 132-146
Reference 29, Pages 139
Isotopic Lead Investigations
Geochimica et Cosmochimica Acta, 1976, Volume 40, Pages 635-643
Reference 31, Page 638
The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

Reference 31, Page 23

www.creation.com

Rocks With Future Dates
 By Paul Nethercott
 May 2013

Introduction

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

Norwegian Caledonides: An Isotopic Investigation

These rocks from Norway were dated ${ }^{8}$ in 2009 using the Rubidium/Strontium and Neodymium/Samarium method. The rock samples gave ages ${ }^{9}$ between -31 and 76 billion years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 60 billion years older than the Big Bang explosion?
"Re/Os model ages determined by LA-ICPMS from $\mathrm{Fe}-\mathrm{Ni}$ sulfides (primarily pentlandite) scatter across the entire history of the Earth, and a few give meaningless future ages or ages older than the Earth." ${ }^{10}$
"The model ages show enormous scatter both within and between bodies and range from meaningless future dates to equally meaningless dates older than the Earth." ${ }^{11}$

Of all the samples 20 are older than the Earth, 8 are older than the Galaxy, 7 are older than the Universe and 19 have negative ages. ${ }^{9}$ There is a 96,557 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Table 1

	Million Years	Million Years
Average	$\mathbf{4 , 1 2 3}$	$\mathbf{2 , 5 7 0}$
Maximum	$\mathbf{7 6 , 5 2 3}$	$\mathbf{6 4 , 5 7 7}$
Minimum	$\mathbf{- 2 0 , 0 3 4}$	$\mathbf{- 3 1 , 0 7 1}$

Table 2

Million Years	Million Years
$-20,034$	$-31,071$
$-7,491$	$-2,394$
$-6,102$	$-2,104$
$-2,184$	-546

Multi-stage Origin of Roberts Victor Eclogites

These rocks from South Africa were dated ${ }^{12}$ in 2011 using the Rubidium/Strontium and Neodymium/Samarium method. The rock samples gave ages ${ }^{13}$ between -22 and 20 billion years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 5 billion years older than the Big Bang explosion?

The author admits that the dates are impossible: "Type I eclogites show wide variations in model ages, from negative values to values much larger than the age of Earth. Sr model ages of Type I samples are all negative. Nd TCHUR ranges from -22.4 to 6.6 Ga , and Nd TDM from -2.3 to 8.1 Ga . Most of the Hf data give future ages; RV07-03, -18 and HRV247 give reasonable model ages, but the model ages of RV07-16 are older than Earth itself." ${ }^{13}$

Table 3

Billion Years	Billion Years	Billion Years	Billion Years
-22.42	-7	-1.51	6.63
-12.34	-5.51	5.07	7.66
-11.44	-2.64	5.41	8.1
-10.02	-2.51	6.27	18.17
-9.9	-2.29	6.36	19.31
-7.15	-2.04	6.57	19.87

There is a 42,290 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Re-Os Systematics of Mantle Xenoliths

These rocks from Tanzania were dated ${ }^{14}$ in 1999 using the Rubidium/Strontium and Neodymium/Samarium method. The rock samples gave ages ${ }^{15}$ between 2.7 billion years old to seven future ages! Since the Earth exists in the present how can rocks have formed in the future? The author admits this in two different places:
"Corresponding to Re depletion (TRD) model ages of 2.8 Ga to the future, respectively" ${ }^{15}$
"Collectively, the deep samples have more radiogenic Os isotopic compositions, corresponding to TRD ages that range from 1 Ga to the future." ${ }^{16}$

Re/Os Isotopes of Sulfides

These rocks from eastern China were dated ${ }^{17}$ in 2006 using the Rhenium/Osmium method. The rock samples gave ages ${ }^{18}$ between 40 billion to -87 billion years! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 70 billion years older than the Big Bang explosion? The author admits this major problem in four different places:
"Widespread Mesozoic magmatism in the Cathaysia block may be represented by abundant mantle sulfides with mildly superchondritic $1870 \mathrm{O} / 1880$ s and 'future' model ages." ${ }^{19}$
"Many of the peridotites studied here contain several generations of sulfides, spanning from Archean to 'future' model ages." ${ }^{20}$
"Samples with higher Re/Os may give 'future' ages, or ages older than Earth." ${ }^{20}$
"However, TMA calculations may yield both future ages and ages older than the Earth, because Re may be added to, or removed from, a xenolith by processes in the mantle and in the host basalt." ${ }^{21}$

In table 4 we can see the minimum ages, and in table 5 the maximum ages. There is 127 billion year difference between the oldest [39 billion years] and the youngest [-87 billion years]. If the universe is only 13 billion years old how can there be such a wide range of ages?

Table 4

Million Years	Million Years	Million Years
$-87,817$	$-10,838$	$-3,503$
$-47,693$	$-10,501$	$-3,031$
$-27,938$	$-7,384$	$-2,902$
$-16,952$	$-6,558$	$-2,814$
$-15,940$	$-5,892$	$-2,741$
$-12,854$	$-3,773$	$-2,552$

Table 5

Million Years	Million Years	Million Years	Million Years
$\mathbf{6 , 0 0 1}$	$\mathbf{6 , 5 1 9}$	$\mathbf{9 , 4 4 9}$	$\mathbf{2 0 , 0 7 3}$
$\mathbf{6 , 0 8 8}$	$\mathbf{6 , 7 3 6}$	$\mathbf{1 0 , 3 8 2}$	$\mathbf{2 2 , 6 6 4}$
$\mathbf{6 , 1 0 6}$	$\mathbf{7 , 4 4 1}$	$\mathbf{1 0 , 7 0 1}$	$\mathbf{2 4 , 6 7 7}$
$\mathbf{6 , 4 2 8}$	$\mathbf{8 , 0 4 4}$	$\mathbf{1 0 , 7 3 6}$	$\mathbf{3 4 , 3 2 9}$
$\mathbf{6 , 4 7 0}$	$\mathbf{8 , 8 6 2}$	$\mathbf{1 8 , 6 0 6}$	$\mathbf{3 9 , 2 2 9}$

There is a 127,046 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The values in table 6 are taken from figure 4 in Xisheng Xu's article. ${ }^{21}$ There is 16 billion year difference between the oldest [9 billion years] and the youngest [-6 billion years]. If the universe is only 13 billion years old how can there be such a wide range of ages?

Table 6

	Cathaysia Block	Yangtze Block	Sino-Korean Block	Xing-Meng Block
Maximum	$\mathbf{9 , 4 6 4}$	$\mathbf{8 , 8 8 9}$	$\mathbf{6 , 4 3 7}$	$\mathbf{7 , 3 9 5}$
Minimum	$-6,574$	$-3,752$	$-2,824$	$-2,061$
Average	-75	340	440	$\mathbf{7 2 0}$

Lu-Hf Geochronology

These granulite xenoliths from the Kilboume Hole, New Mexico, ${ }^{22}$ have been dated in 1997 using the Lu-Hf isotope system. The author admits that impossible dates have been generated: "The Nd isotope model ages presented in Table 3 are generally negative for the garnet granulites. A future age, or one that is older than the actual differentiation event, represents a rotation of a sample's apparent Nd isotope evolution curve, caused by increasing the $\mathrm{Sm} / \mathrm{Nd}$ ratio at some time in the past." ${ }^{23}$

The values in table 7 contain numerous negative ages. ${ }^{24}$ One sample (CKH63) has dates that vary from -3,297 to 2,478 million years old. That means a 5.7 billion year difference. Earth rocks can only be 4.5 billion years old so how can there be such a wide variation?

Table 7

Million Years
$-3,297$
$-1,051$
-659
-514

Table 8

Sample	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$207 \mathrm{~Pb} / 235 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$
63 a	426	611	1371
63 d	317	490	1410
63 e	98	161	1238
63 j	430	622	1402
63 g	136	242	1457
63 b	319	483	1362
63 c	425	624	1429

The Uranium/Lead dates ${ }^{25}$ listed in table 8 shows that there is major discordance between various methods. Sample 63 e has a 1260% difference in ages. The author's choice of 'true age' is arbitrary.

Isotopic Disequilibrium

These mineral samples from Mono Lake, California and Seram, Indonesia ${ }^{26}$ have been dated in 1998 using the $\mathrm{Rb} / \mathrm{Sr}$ and Pb / U isotope systems. These mineral samples from Mono Lake, California are supposed to be 11.9 million years old: "The HIGH glasses are all less radiogenic than the source granite at 11.9 Ma . Within the HIGH glasses there is a general positive correlation between $87 \mathrm{Sr} / 86 \mathrm{Sr}(11.9 \mathrm{Ma})$ and $\mathrm{Rb} / \mathrm{Sr}$." ${ }^{27}$ If we run the isotopic ratios ${ }^{28}$ listed in table 2 in the article through Isoplot ${ }^{29}$ we get dates from 3,913 to 11,500 million years old! That means they are between 328 and 966 times too old!

These mineral samples from Seram, Indonesia are supposed to be 5.5 million years old: "The most precise muscovite and biotite $\mathrm{Ar} / \mathrm{Ar}$ ages obtained from the complex 5.90 Ma and 5.51 Ma , respectively." ${ }^{30}$ If we run the isotopic ratios listed in table 4^{31} in the article through Isoplot ${ }^{30}$ we get dates from 4,980 to 11,660 million years old! That means they are between 906 and 2,120 times too old!
"In contrast, the plagioclase from the leucosome and the three matrix samples from the melanosome of BK 21B yield 'future ages' from -11 and $-15 \mathrm{Ma} .{ }^{32}$ There is a 11,516 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Table 9

Table 2	Table 2	Table 4	Table 4	Table 5
$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{8 7 R b} / 86 \mathrm{Sr}$
$\mathbf{5 , 9 0 2}$	$\mathbf{3 , 9 1 4}$	$\mathbf{4 , 4 9 3}$	$\mathbf{4 , 9 8 2}$	$\mathbf{- 1 4 . 7}$
$\mathbf{5 , 9 7 6}$	$\mathbf{3 , 9 1 4}$	$\mathbf{1 0 , 8 2 2}$	$\mathbf{4 , 9 8 5}$	$\mathbf{- 1 3 . 3}$
$\mathbf{6 , 4 0 3}$	$\mathbf{3 , 9 1 3}$	$\mathbf{9 , 7 2 8}$	$\mathbf{4 , 9 8 4}$	$\mathbf{- 1 1}$
$\mathbf{6 , 1 5 7}$	$\mathbf{3 , 9 1 3}$	$\mathbf{1 1 , 2 1 6}$	$\mathbf{4 , 9 8 0}$	4.79
$\mathbf{7 , 8 0 1}$	$\mathbf{3 , 9 1 4}$	$\mathbf{1 0 , 9 8 0}$	$\mathbf{4 , 9 8 2}$	$\mathbf{1 2}$
$\mathbf{8 , 0 0 6}$	$\mathbf{3 , 9 1 3}$	$\mathbf{1 1 , 6 6 0}$	$\mathbf{4 , 9 8 2}$	$\mathbf{3 1 . 4}$
$\mathbf{8 , 3 2 0}$	$\mathbf{3 , 9 1 9}$	$\mathbf{7 , 1 3 3}$	$\mathbf{4 , 9 8 1}$	$\mathbf{3 2 . 2}$
$\mathbf{8 , 5 2 2}$	$\mathbf{3 , 9 1 6}$	$\mathbf{1 0 , 1 6 8}$	$\mathbf{4 , 9 8 2}$	$\mathbf{3 3 . 9}$
$\mathbf{8 , 7 2 6}$	$\mathbf{3 , 9 1 7}$	$\mathbf{1 0 , 2 3 5}$	$\mathbf{5 , 0 4 1}$	$\mathbf{4 4}$
$\mathbf{8 , 3 6 8}$	$\mathbf{3 , 9 2 0}$	$\mathbf{8 , 1 6 7}$	$\mathbf{5 , 0 3 1}$	$\mathbf{6 5 . 2}$
$\mathbf{1 1 , 5 0 1}$	$\mathbf{3 , 9 2 0}$			$\mathbf{7 9}$

Multiple Metasomatic Events

These mineral samples from the Labait volcano, north-central Tanzania ${ }^{33}$ have been dated in 2008 using the $\mathrm{Rb} / \mathrm{Sr}$ and $\mathrm{Sm} / \mathrm{Nd}$ isotope systems. The author admits that the dates give several negative ages:
"These deeper more fertile peridotites yield younger Re/Os ages (1 Ga to future ages) and represent either mixtures of ancient lithosphere with the underlying asthenosphere or recent additions to the base of the lithosphere." ${ }^{34}$ There is a 4,205 million year spread ${ }^{35}$ of dates between the youngest [Negative] and the oldest [Positive] ages.

Table 10

Million Years
2,013
$-2,192$
$-1,115$
-573

Re-Os Evidence

These mineral samples from central eastern China, ${ }^{36}$ have been dated in 2006 using the Re/Os isotope systems. The author admits that the dates give several negative ages: "Ages ($-6,900$ to $7,330 \mathrm{Ma}$) of the Raobozhai peridotites vary widely from geologically meaningless to future ages." ${ }^{37}$ The dating gave four impossible future ages. ${ }^{38}$ According to Re/Os isochron diagrams ${ }^{39}$ for Xugou peridotites, the formation is 2,000 million years old. There is a 14,230 million year spread_of dates between the youngest [Negative] and the oldest [Positive] ages.

Central Asian Orogenic Belt

These mineral samples from north eastern China, ${ }^{40}$ have been dated in 2010 using the Re/Os isotope systems.
According to $\mathrm{Re} / \mathrm{Os}$ isochron dates ${ }^{41}$ the formation is 2,000 million years old. The author admits that the dates give several negative ages: "Other samples give TMA either older than the age of the Earth or a future age, suggesting a disturbance of the Re-Os isotope system in these samples." ${ }^{42}$ There is a 23,920 million year spread 43 of dates between the youngest [Negative] and the oldest [Positive] ages.

Table 11

Billion Years
-9.27
-3.83
5.91
10.62
14.65

The Mamonia Complex, Cyprus

These mineral samples from Mamonia complex, Cyprus, ${ }^{44}$ have been dated in 2008 using the Re/Os isotope systems. According to Re/Os isochron dates ${ }^{44}$ the formation is from three age clusters at $250 \mathrm{Ma}, 600-800 \mathrm{Ma}$ and $1,000 \mathrm{Ma}$. Four ${ }^{45}$ of the thirty dates had future ages. This is a serious issue of having so many impossible dates:
"The minimum ages of the Mamonia spinel peridotites varies from negative (future age) to 1150 Ma ." ${ }^{46}$
"The calculation of the ages of the melting event (depletion in Re) gives inconclusive results varying from future ages to $>1000 \mathrm{Ma}$." ${ }^{47}$

A Paleozoic Convergent Plate

These mineral samples from Austria, ${ }^{48}$ have been dated in 2004 using the Re/Os isotope systems. Even though the Earth is supposed to be only 4.5 billion years old some dates are twice as old: "Rhenium-Osmium model ages range between future ages and $9.1 \mathrm{Ga} .{ }^{"}{ }^{49}$ If we enter the isotopic ratios ${ }^{50}$ into Microsoft Excel and use the standard mathematical formula ${ }^{51}$ we find that the dates are between 100 and 2,500 percent in error.

$$
\begin{gathered}
t=\frac{2.303}{\lambda} \log \left(\frac{(187 O s / 188 O s)-(187 O s / 188 O s)_{0}}{(187 \operatorname{Re} / 188 O s)}+1\right) \\
\lambda=\frac{0.693}{h} \\
\hline
\end{gathered}
$$

$\mathrm{h}=$ half life 41.6 billion years
$t=$ the rocks age in years
Table 12

Age	T ch Age	Age	Age Ratio
Million Years	Billion Years	Difference	Percentage
352	-4,300	4,652	1,221
376	-500	876	133
349	1,900	2,249	545
352	8,800	9,152	2,500
356	9,100	9,456	2,559
357	6,200	6,557	1,739
350	400	750	114
354	1,300	1,654	368
350	1,200	1,550	343
355	3,300	3,655	930
350	1,100	1,450	314
351	2,100	2,451	598
350	4,300	4,650	1,230

There is a 13,400 million year spread ${ }^{50}$ of dates between the youngest [Negative] and the oldest [Positive] ages.

Northern Canadian Cordillera Xenoliths

These mineral samples from Northern Canada, ${ }^{51}$ have been dated in 1999 using the Re/Os isotope systems. According to $\mathrm{Re} / \mathrm{Os}$ isochron dates ${ }^{52}$ the formation's true age is 1.64 billion years old. Many of the dates were impossible future ages: "The decoupling of $187 \mathrm{Re} / 188 \mathrm{Os}$ and $187 \mathrm{Os} / 1880 \mathrm{O}$ observed in the Canadian Cordillera xenolith data also affects the calculation of Os model ages, and leads to 'future' ages or ages older than the Earth." ${ }^{52}$ Of the forty one dates, fifteen [37\%] were negative ages. ${ }^{53}$

Xenoliths From Yangyuan and Fansi

These mineral samples from North China Craton, ${ }^{55}$ have been dated in 2007 using the Re/Os isotope systems. According to Re/Os isochron dates ${ }^{55}$ the formation's true age is 2.6 billion years old. Many of the dates were impossible future ages: "Nd model ages range from future ages to older than that of the Earth." ${ }^{56}$ If we look at the dating table in the article, there is a 20,500 million year spread ${ }^{57}$ of dates between the youngest [Negative] and the oldest [Positive] ages.

Table 13

Billion Years	
-10.8	Billion Years
-3.5	-0.53
9.7	-0.31

Formation of the North Atlantic Craton

These mineral samples from west Greenland, ${ }^{58}$ have been dated in 2010 using the $\mathrm{Re} / \mathrm{Os}$ isotope systems. According to $\mathrm{Re} / \mathrm{Os}$ isochron dates ${ }^{58}$ the formation's true age is 2.0 to 3.0 billion years old. Many of the dates were impossible future ages:
"The WG-NAC peridotites, unsurprisingly, yield a substantial number of TMa model ages that are older than the earliest solids in the solar system or Earth (16%) or result in future ages (15%). This means that a third of the samples investigated here do not provide realistic TMa mantle melting ages. Os isotope data acquired by laser ablation measurements of sulphides in peridotites typically lack precise $\mathrm{Re} / \mathrm{Os}$ data, and also yield a high proportion of samples with extremely scattered and unrealistic TMa mantle melting ages that range from future ages to those exceeding the age of the Earth." ${ }^{59}$
"These Os isotope systematics yield equally diverse TRD model ages ranging from Paleoarchean in individual samples to future ages." ${ }^{59}$

There is a $\underline{\mathbf{2 1}, \mathbf{2 5 2}}$ million year spread of dates ${ }^{60}$ between the youngest [Negative] and the oldest [Positive] ages. The data in tables 14 and 15 correspond to tables 1 and 2 in the original article.

Table 14

Million Years
5,872
5,485
4,845
-552

Table 15

Million Years	Million Years
$-14,258$	5,571
$-14,258$	5,643
$-14,209$	5,793
$-1,066$	6,950
4,788	6,994
5,325	6,994

In Situ Measurement of Re-Os Isotopes

These mineral samples from the Siberian and Slave Cratons, and the Massif Central, France, ${ }^{61}$ have been dated in 2010 using the Re/Os isotope systems. According to Re/Os isochron dates ${ }^{\mathbf{6 2}}$ the formation's true age is 2.3 to 3.6 billion years old. Many of the dates were impossible future ages: "Therefore, both TRD and TMA yield unrealistic ages (future or unreasonably old, respectively)." 63

Table 16

Billion Years	Billion Years
-1.89	-7.12
-1.3	-3.54
-1.2	-1.99
3.52	7.69
5.41	14.81

If we look at table 16 we see the bottom row has the difference between the oldest and youngest dates ${ }^{64}$ in the original article.

Conclusion

Prominent evolutionist Brent Dalrymple states: "Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{65}$

Looking at some of the dating it is obvious that precision is much lacking. He then goes on: "Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{66}$

The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html The age of 10 to 15 billion years for the age of the Universe.
http://en.wikipedia.org/wiki/Age_of the_universe

9 Reference 8, Pages 6, 7
10 Reference 8, Pages 7
11 Reference 8, Pages 11
12 Multi-stage origin of Roberts Victor Eclogites, Lithos, Volume 142-143, 2012, Pages 161-181
13 Reference 12, Page 169

Re-Os Systematics of Mantle Xenoliths, Geochimica et Cosmochimica Acta, Volume 63, Number 7/8, Pages 1203-1217, 1999

Reference 14, Page 1206
Reference 14, Page 1213
Re/Os Isotopes of Sulfides, Lithos, Volume 102, 2008, Pages 43-64
Reference 17, Pages 46-50
Reference 17, Pages 43
Reference 17, Pages 52
Reference 17, Pages 53
Lu-Hf Geochronology, Chemical Geology, Volume 142, 1997, Pages 63-78
Reference 23, Page 73

Reference 23, Page 70
Reference 23, Page 71
Isotopic Disequilibrium, Chemical Geology, Volume 162, 2000, Pages 169-191
Reference 27, Page 175
Reference 27, Page 174, 175
http://www.bgc.org/isoplot_etc/isoplot.html
Reference 27, Page 177
Reference 27, Page 179
Reference 27, Page 180
Multiple Metasomatic Events, Lithos, Volume 112-S, 2009, Pages 896-912
Reference 34, Page 897
Reference 34, Page 910
Re-Os Evidence, Chemical Geology, Volume 236, 2007, Pages 323-338
Reference 36, Page 334
Reference 36, Page 331
Reference 36, Page 332
Central Asian Orogenic Belt, Lithos, Volume 126, 2011, Pages 233-247
Reference 40, Page 233
Reference 40, Page 241
Reference 40, Page 241, 242

The Mamonia Complex in Cyprus, Chemical Geology, Volume 248, 2008, Pages 195
Reference 44, Page 198
Reference 44, Page 208
Reference 44, Page 209
A Paleozoic Convergent Plate, Chemical Geology, Volume 208, 2004, Pages 141-156
Reference 48, Page 150
Reference 48, Page 146
Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986, Page 266.

Northern Canadian Cordillera Xenoliths, Geochimica et Cosmochimica Acta, 2000, Volume 64, Number 17, Pages 3061-3071

Reference 52, Page 3067
Reference 52, Page 3064

Xenoliths from Yangyuan and Fansi, Lithos, Volume 102, 2008, Page 25
Reference 55, Page 29

Reference 55, Page 37
Formation of the North Atlantic Craton, Chemical Geology, Volume 276, 2010, Pages 166-187
Reference 58, Page 181
Reference 58, Page 170-173
In situ Measurement of Re-Os Isotopes, Geochimica et Cosmochimica Acta, 2002, Volume 66, Number 6, Pages 1037-1050

Reference 61, Page 1045
Reference 61, Page 1047
Reference 61, Page 1046
The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

Reference 53, Page 23

Impossible Radiometric Dates

By Paul Nethercott
April 2013
Introduction
How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

Evolution Beneath the Kaapvaal Craton

These rocks from South Africa were dated ${ }^{8}$ in 2004 using the Rhenium/Osmium dating method. The rock samples gave ages ${ }^{9}$ between - 279 and 79 billion years old! There is a 358,000 million year ${ }^{9}$ spread of dates between the youngest [Negative] and the oldest [Positive] ages. Of the 374 dates, 92 [25\%] are negative. The author admits in several places that many ages are impossibly old or young:
"In some cases these define plausible ages (Fig. 8a) but in most the 'ages' are greater than the age of the Earth (Fig. 8b), and all of these correlations are regarded as mixing lines." ${ }^{10}$
"Both types of high-Fe samples have high proportions of sulfides with young to negative TRD ages." ${ }^{11}$
"Negative model ages are meaningless numbers, and are plotted at increments of .0 .1 Ga to illustrate the relative abundance of sulfides." ${ }^{11}$

Table 1

Average	-5	3
Maximum	5	79
Minimum	-279	-124

Table 2

Age Type	Amount	Percent
Negative Ages	92	24.59
Older Than The Earth	35	9.35
Older Than The Galaxy	11	2.94
Older Than The Universe	8	2.13

Central Asian Orogenic Belt

These rocks from Northern China were dated ${ }^{12}$ in 2010 using the Rhenium/Osmium dating method. The rock samples in table 2 in the article gave ages ${ }^{13}$ between -9 and 14 billion years old! There is a 14,450 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The rock samples in table 3 in the article gave ages ${ }^{14}$ between -3.8 and 10.6 billion years old! There is a 23,920 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits in several places that many ages are impossibly old or young:
"Whereas two samples give model ages close to, or even greater than, the age of the Earth." ${ }^{15}$

Impossible Radiometric Dates

"Other samples give TMA either older than the age of the Earth or a future age, suggesting a disturbance of the $\mathrm{Re}-\mathrm{Os}$ isotope system in these samples." ${ }^{13}$
"Thirteen Keluo mantle xenoliths yield impossible TMA model ages, i.e., negative or greater than the Earth's age, reflecting the modification of Re/Os ratios shortly before, during or since basalt entrainment." ${ }^{16}$

Table 3

	187Re/188Os	187Re/188Os
	Billion Years	Billion Years
Average	0.94	0.86
Maximum	2.09	10.62
Minimum	-0.33	-3.83

Table 4

	$147 \mathrm{Sm} / 144 \mathrm{Nd}$	176Lu/177Hf
	Billion Years	Billion Years
Average	2.06	0.73
Maximum	5.91	14.65
Minimum	0.49	-9.27

If we use the Rhenium/Osmium dating formula shown in Gunter Faure's book ${ }^{17}$ and enter a set of isotopic ratios listed in the original online article ${ }^{18}$ we find the rock formation is less than 500 thousand years old.

$$
\begin{gathered}
t=\frac{2.303}{\lambda} \log \left(\frac{(187 O s / 188 O s)-(187 O s / 188 O s)_{0}}{(187 \mathrm{Re} / 188 O s)}+1\right) \\
\lambda=\frac{0.693}{h}
\end{gathered}
$$

$\mathrm{h}=$ half life, 41.6 billion years
$t=$ the rocks age in years

Norwegian Caledonides

These rocks from western Norway were dated ${ }^{19}$ in 2009 using the Samarium/Neodymium dating method. The rock samples in the article gave ages ${ }^{20}$ between -64 and 76 billion years old! There is a 141,100 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits in several places that many ages are impossibly old or young:
"Re-Os model ages determined by LA-ICPMS from $\mathrm{Fe}-\mathrm{Ni}$ sulfides (primarily pentlandite) scatter across the entire history of the Earth, and a few give meaningless future ages or ages older than the Earth." ${ }^{21}$
"Table 2 lists model ages based on primitive (CHUR) and depleted (DM) mantle models. The model ages show enormous scatter both within and between bodies and range from meaningless future dates to equally meaningless dates older than the Earth." 22
"These filters eliminate most of the negative dates and leave only three apparent ages older than the Earth." ${ }^{22}$

Table 5

	Million Years	Million Years
Average	$\mathbf{4 , 5 1 0}$	$\mathbf{1 , 4 0 0}$
Maximum	$\mathbf{7 6 , 5 2 3}$	$\mathbf{4 0 , 3 8 4}$
Minimum	$-\mathbf{7 , 4 9 1}$	$\mathbf{- 6 4 , 5 7 7}$

Re-Os Isotopes of Sulfides

These rocks from eastern China were dated ${ }^{23}$ in 2007 using the Rhenium/Osmium dating method. The rock samples in the article gave ages ${ }^{24}$ between -47 and 39 billion years old! There is an 86,900 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. Out of the 348 dates, 72 (21%) were negative and $19(5 \%)$ were older than the evolutionist age of the Earth. The author admits in several places that many ages are impossibly old or young:
"Re/Os versus TMA and TRD model ages, showing how samples with higher Re/Os may give 'future' ages, or ages older than Earth." ${ }^{25}$
"Many of the peridotites studied here contain several generations of sulfides, spanning from Archean to 'future' model ages." ${ }^{25}$
"However, TMA calculations may yield both future ages and ages older than the Earth, because Re may be added to, or removed from, a xenolith by processes in the mantle and in the host basalt." ${ }^{26}$
"A plot of TRD model ages that includes the "future" ages required by sulfides with super chondritic 187Os/188Os shows a marked peak at -180 Ma for the samples from the Cathaysia block." ${ }^{27}$

Table 6

Table 6		
	Million Years	Million Years
Average	$\mathbf{4 6 2}$	$\mathbf{1 , 3 6 9}$
Maximum	$\mathbf{4 , 4 6 1}$	$\mathbf{3 9 , 2 2 9}$
Minimum	$-6,558$	$-47,693$

Archean Man Shield, West Africa

These rocks from Sierra Leone were dated ${ }^{28}$ in 2001 using the Rhenium/Osmium and Uranium/Lead dating method. The Uranium/Lead dating system gave an average age ${ }^{29}$ of 2.5 billion years. The Rhenium/Osmium dating system gave an average age ${ }^{30}$ of 8 billion years. The rock samples in the article gave ages ${ }^{30}$ between 1.2 and 77 billion years old! There is a 76,000 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits in several places that many ages are impossibly old or young:
"For the high MgO samples, more than half of the $\mathrm{Re} / \mathrm{Os}$ model ages are older than the age of the Earth, indicating they either experienced recent Re loss or gain of radiogenic Os." ${ }^{31}$
"Five out of 13 of the low MgO samples also have Re/Os model ages older than the Earth." 31

Table 7

Statistics	Re/Os	206Pb/238U	$207 \mathrm{~Pb} / 235 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$
Average	8,092	2,367	2,649	2,910
Maximum	77,160	3,185	3,412	3,562
Minimum	1,390	1,204	1,873	$\mathbf{2 , 7 4 3}$

Lithospheric Mantle Evolution

These rocks from north Queensland were dated ${ }^{32}$ in 2010 using the Rhenium/Osmium dating method. The rock samples in the article gave ages ${ }^{33}$ between -24 and 8.6 billion years old! There is a 33,330 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. Out of the 54 dates, 13 (24\%) were negative and two were older than the evolutionist age of the Earth. The author admits that many ages are impossibly old or young:
"Sulfides deposited from fluids with variable $\mathrm{Re} / \mathrm{Os}$ have Os-isotope compositions that either plot in the field with $\gamma \mathrm{Os}>0$ and $\mathrm{Re} / \mathrm{Os}>\mathrm{CHUR}$, and with negative TRD and TMA ages or they plot in the field with $\gamma \mathrm{Os}>0$ and $\mathrm{Re} / \mathrm{Os}>\mathrm{CHUR}$, and with negative TMA and positive TRD ages." ${ }^{34}$

Table 8

	\underline{c} Billion Years	Billion Years
Average	-0.44	0.93
Maximum	8.62	3.36
Minimum	-24.71	-1.75

Upper Crust in North-East Australia

These rocks from north Queensland were dated ${ }^{35}$ in 2010 using the Rhenium/Osmium dating method. The rock samples in the article gave ages ${ }^{36}$ between -3.2 and 9.7 billion years old! There is a 12,950 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. Out of the 31 dates, 6 (20\%) were negative and one was older than the evolutionist age of the Earth. The author admits that many ages are impossibly old or young:
"Some garnet-rich granulites from the McBride Province yielded negative Hf and Nd model ages, whereas the Mt Quincan granulite yields model ages both older than the Earth and negative; these are not useful and are rejected." ${ }^{37}$

Table 9

1able 9		
Average	2.01	1.50
Maximum	9.73	3.97
Minimum	-0.80	-3.22

The Kaapvaal Cratonic Lithospheric Mantle

These rocks from South Africa were dated ${ }^{38}$ in 2006 using the Samarium/Neodymium and Lutetium/Hafnium dating methods. The rock samples in the first table [Table 10] in the article gave ages ${ }^{39}$ between - 67 and 30 billion years old! There is a 97,790 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. Out of the 57 dates, $17(30 \%)$ were negative and four were older than the evolutionist age of the Earth. The author admits that many ages are impossibly old or young:
"The large difference in $\mathrm{Sm} / \mathrm{Nd}$, but the relatively similar Nd isotope compositions of the garnet and cpx from the same sample result in generally young two-point cpx garnet $\mathrm{Sm} / \mathrm{Nd}$ 'ages' for the Kimberley samples ranging from negative to 202 Ma ." ${ }^{40}$
"Evidence that complete equilibration was not achieved in many of the samples comes from the observation that tie-lines connecting the garnet and $\mathrm{Sm} / \mathrm{Nd}$ data for seven samples provide ages younger than the time of kimberlite eruption, including a number of samples that give negative ages." ${ }^{41}$
"Negative $\mathrm{Sm} / \mathrm{Nd}$ garnet ages are not uncommon for peridotite xenoliths and were first described in samples from Kimberley." 41

Table 10

Minimum	Maximum
-67.49	4.85
-8.15	25.46
-2	30.3

If we put the Samarium/Neodymium and Lutetium/Hafnium ratios in first table ${ }^{39}$ in the article into Microsoft Excel and use the dating formulas ${ }^{\mathbf{4 2}, 43}$ listed in Gunter Faure's book we find that the average age is just 100 million years! The spread of dates is not 100 billion years but just 100 million years!

$$
t=\frac{2.303}{\lambda} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(144 S m / 147 N d)}+1\right)
$$

$h=$ half life, 106 billion years

$$
t=\frac{2.303}{\lambda} \log \left(\frac{(176 H f / 177 H f)-(176 H f / 177 H f)_{0}}{(176 L u / 177 H f)}+1\right)
$$

$\mathrm{h}=$ half life, 37.3 billion years
Table 11

Billion Years
0.6
12.2
14.5
21.8
34.6

If we look at the dates in table eleven ${ }^{44}$ there is a $\mathbf{3 4 , 0 0 0}$ million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. If we look at the dates in table twelve ${ }^{41}$ there is a $\mathbf{9 9 , 9 0 8}$ million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Table 12

Statistical	Billion Years	Billion Years
Data	Sm-Nd	Lu-Hf
Minimum	$-2,247$	$-2,377$
Maximum	96,661	1,995
Difference	98,908	4,372

In Situ Analysis of Sulphides

These rocks from South Australia and France were dated ${ }^{45}$ in 2001 using the Rhenium/Osmium dating methods. The rock samples in the second table in the article gave ages ${ }^{46}$ between -17 and 34 billion years old! With the South Australian rocks, there is a 51,000 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits that many ages are impossibly old or young:
"It is obviously not the case here, given that TMA model ages for some sulphides or samples are unrealistic, giving future ages or ages older than $4.5 \mathrm{Ga} .{ }^{46}$
"Interstitial sulphides in GRM-2 yield future TRD ages and unrealistic TMA ages, again indicating that the Os isotopic composition is not related to time-integrated in situ Re decay." ${ }^{47}$

Table 12

Billion Years	Billion Years
-17.4	4.35
-9.5	5.2
-7.06	8.3
-2.35	8.8
-0.3	34

South Australian rocks
Table 13

Billion Years	Billion Years
-32	3.11
-2.08	3.93
-1.79	6.7
-1.43	7.4
-1.42	16

French rocks
With the French rocks, ${ }^{48}$ there is a 48,000 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Southern African Peridotite Xenoliths

These rocks from South Africa were dated ${ }^{49}$ in 1988 using several dating methods. If we insert the isotopic ratios listed one table ${ }^{50}$ we find that the Rubidium/Strontium ratios give ages between 83 and between 1,100 million years old. If we insert the Lead/Lead ratios listed in the same table we find the rock is between 4,700 and 5,000 million years old. If we insert the Osmium ratios listed in another table ${ }^{51}$ and use the dating formula shown in Gunter Faure's book ${ }^{52}$ we find the rock is between $-3,300$ and 13,500 million years old. There is a $\mathbf{1 6 , 0 0 0}$ million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

$$
t=\frac{1.04-\left({ }^{187} O s /{ }^{186} O s\right)}{0.050768}
$$

In the above formula, $\mathrm{t}=$ billions of years.
Table 14

Dating	Age	Age	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{1 8 7 O s} / 1860 \mathrm{~s}$	Neodymium	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$
Maximum	$\mathbf{1 , 1 0 0}$	$\mathbf{1 3 , 5 5 1}$	$\mathbf{1 , 6 3 0}$	$\mathbf{5 , 0 6 4}$
Minimum	$\mathbf{8 3}$	$-\mathbf{3 , 3 0 9}$	520	4,700
Difference	$\mathbf{1 , 0 1 7}$	$\mathbf{1 6 , 8 6 0}$	$\mathbf{1 , 1 1 0}$	$\mathbf{3 6 4}$

Xenoliths from Kimberley, South Africa

These rocks from South Africa were dated ${ }^{53}$ in 2007 using the Rhenium/Osmium dating method. The rock samples in the article gave ages ${ }^{54}$ between $-117,980$ and 143,830 million years old! With the rocks, there is a 261,810 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages. The author admits that many ages are impossibly old or young:

Impossible Radiometric Dates

"The very old Re-Os model age of websterite DJ0217 of 7 Ga testifies to a more complex history for this sample." 55
"The olivines from these samples also provide negative Re-Os model ages suggesting recent modification of their Re-Os systematics." ${ }^{56}$
"On a Re-Os isochron diagram, the whole-rock-olivine tie-line for DJ0259 corresponds to an age of 5.2 Ga. This unrealistic age coupled with the radiogenic Os, but near chondritic Re/Os ratio of the olivine suggests that the olivine in this dunite was either added recently, or interacted extensively with modern mantle melts, for example the host kimberlite." ${ }^{56}$

Table 15

Mineral	Average	Maximum	Minimum	Difference
Dunite	970	3,250	$-3,470$	6,720
Dunite	1,918	14,580	$-15,020$	29,600
Wehrlite	2,375	3,190	900	3,100
Wehrlite	3,096	21,670	$-11,150$	32,820
Websterite	$-19,150$	3,050	$-117,980$	121,030
Websterite	24,503	143,830	450	143,380

Conclusion

Yuri Amelin states in the journal Elements that radiometric dating is extremely accurate:
"However, four 238U/235U-corrected CAI dates reported recently (Amelin et al. 2010; Connelly et al. 2012) show excellent agreement, with a total range for the ages of only 0.2 million years - from $4567.18 \pm 0.50 \mathrm{Ma}$ to 4567.38 ± 0.31 Ма." ${ }^{57-59}$

To come within 0.2 million years out of 4567.18 million years means an accuracy of 99.99562%. Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in radiometric dating is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html The age of 10 to 15 billion years for the age of the Universe.

2 http://en.wikipedia.org/wiki/Age_of_the_universe
3 http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
4 http://en.wikipedia.org/wiki/Age of the Earth
5 http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
6 The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382

7 http://arxiv.org/pdf/astro-ph/0506458v1.pdf
The age of the Galactic disk, By E. F. del Peloso and L. da Silva
Astronomy \& Astrophysics, Manuscript no. 3307, February 2, 2008

C:\Essays\Geo Dating\Dating\Impossible\Impossible.xlsm

Evolution Beneath the Kaapvaal Craton, Chemical Geology, Volume 208, 2004, Pages 89-118
Reference 8, pages 101-105
Reference 8, pages 107
Reference 8, pages 110
Central Asian Orogenic Belt, Lithos, Volume 126, 2011, Pages 233-247
Reference 12, page 241
Reference 12, page 242
Reference 12, page 239
Reference 12, page 244
Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986, Page 266.
http://www.sciencedirect.com/science/article/pii/S0024493711002179
Norwegian Caledonides: An isotopic investigation, Lithos, Volume 117, 2010, Pages 1-19
Reference 19, pages 6, 7
Reference 19, page 7
Reference 19, page 11
Re/Os Isotopes of Sulfides, Lithos, Volume 102, 2008, Pages 43-64
Reference 23, pages 46-50
Reference 23, page 52
Reference 23, page 53
Reference 23, page 61
Archean Man Shield, West Africa, Precambrian Research, Volume 118, 2002, Pages 267-283
Reference 28, pages 273, 274
Reference 28, page 277
Reference 28, page 276
Lithospheric Mantle Evolution, Lithos, Volume 125, 2011, Pages 405-422
Reference 32, page 417
Reference 32, page 415
Upper Crust in North-East Australia, International Journal Earth Science, 2012, Volume 101,

Impossible Radiometric Dates

Pages 1091-1109
Reference 35, Pages 1099, 1101
Reference 35, Pages 1098
The Kaapvaal Cratonic Lithospheric Mantle, Journal Of Petrology, 2007, Volume 48, Number 3, Pages 589-625

Reference 38, pages 600-601
Reference 38, pages 609
Reference 38, pages 612
Reference 17, pages 205
Reference 17, pages 252
Reference 38, pages 610
In Situ Analysis of Sulphides, Earth and Planetary Science Letters, 2002, Volume 203, Pages 651-663

Reference 45, page 654
Reference 45, page 659
Reference 45, page 655
Southern African Peridotite Xenoliths, Geochimica et Cosmochimica Acta, 1989, Volume 53, Pages 1583-1595

Reference 49, page 1587
Reference 49, page 1588
Reference 17, page 269
Xenoliths from Kimberley, South Africa, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 5722-5756

Reference 53, page 5737
Reference 53, page 5743
Reference 53, page 5744
Dating the Oldest Rocks in the Solar System, Elements, 2013, Volume 9, Pages 39-44
Amelin, Earth and Planetary Science Letters, 2010, Volume 300, Pages 343-350
Connelly, Science, 2012, Volume 338, Pages 651-655

www.creation.com

Meteorite Dating
By Paul Nethercott
May 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{\mathbf{1}}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{\mathbf{5}, \mathbf{6}}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

History Of The Acapulco Meteorite

This meteorite was dated in 1997 by scientists ${ }^{8}$ from France and Germany. Some of the dates ${ }^{9}$ are older than the Solar System. We shall soon see that this is quite common for dating these rocks.

Table 1

Maximum Age	$\mathbf{1 1 , 4 2 1}$	Million Years
Minimum Age	$\mathbf{3 , 4 8 1}$	Million Years
Average Age	$\mathbf{4 , 9 6 4}$	Million Years
Age Difference	$\mathbf{7 , 9 4 0}$	Million Years
Difference	$\mathbf{3 2 8 \%}$	Percent
Standard Deviation	$\mathbf{1 , 7 2 3}$	Million Years

Potassium Argon Dating of Iron Meteorites

This article summarised meteorite dating in $1967 .{ }^{10}$ Even 40 years later things are no better. In the opening paragraph he states that the iron meteorite from Weekeroo Station is date at ten billion years old. He then continues: "The formation or solidification ages of iron meteorites have never been well determined." ${ }^{11}$ He then cites earlier dating which produced an age of seven billion years. ${ }^{12}$ The author concludes with the following remark: "The ages found by us are typical of the great ages found for most iron meteorites. From these, in conjunction with the Strontium: Rubidium data of Wasserburg et al. on silicate inclusions in this meteorite, we conclude that the potassium: argon dating technique as applied to iron meteorites gives unreliable results." ${ }^{13}$

Table 2

Meteorite	Age
Sample	Billion Years
Neutron Activation	10.0
Stoenner and Zahringer	7.0
Muller and Ziihringer's	6.3
Wasserburg, Burnett	4.7
K-1	8.5
K-2	9.3
B-1	6.5
G-1	10.4

Pb Isotopic age of the Allende Chondrules

The meteorite was dated in 2007 using the ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ dating method. ${ }^{14}$ Over ten dates older than the age of the evolutionist age of the Solar System were produced and one was older [Ten Billion years] than the age of the galaxy. ${ }^{15}$

Table 3

Maximum Age	$\mathbf{1 0 , 0 6 6}$	Million Years
Minimum Age	$\mathbf{1 , 7 9 9}$	Million Years
Average Age	$\mathbf{4 , 5 0 9}$	Million Years
Age Difference	$\mathbf{8 , 2 6 7}$	Million Years
Percentage Difference	$\mathbf{5 5 9 \%}$	Percent
Standard Deviation	$\mathbf{1 , 6 4 0}$	Million Years

Rhenium-187-Osmium-187 in Iron Meteorites

Scientists from France used both ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ and Rhenium-Osmium method were used to date this meteorite in $1998 .{ }^{16}$ Dates in the essay ${ }^{17}$ of the Canyon Diablo meteorite vary from one to fourteen billion years old. There is a $1,200 \%$ difference between the youngest and oldest date obtained for the one rock.

Table 4

Meteorite	Age
Name	Billion Years
Canyon Diablo	
Troilite 4	1.13
Leach Acetone	5.73
Leach H,O	8.31
Troilite dissolved	10.43
Metal 1	13.7

Ar-39/Ar-40 Dating of Mesosiderites

This was dated in 1990 by Scientists from the NASA Johnson Space Center, Houston, Texas. ${ }^{18}$ All of the eleven meteorites dated gave ages older than the Solar System and three dated as being as old, or even older than the evolutionist age of the galaxy. ${ }^{19}$ According to one table the supposed true age is just 3.5 billion years old. ${ }^{20}$

Table 5

Meteorite	Maximum	Minimum	Age Difference	Percentage
Name	Billion Years	Billion Years	Billion Years	Difference
1. Emery	9.08	3.31	5.77	274%
2. Estherville	13.96	3.18	10.78	438%
3. Hainholz	5.48	1.55	3.93	353%
4. Lowicz	9.93	2.92	7.01	340%
5. Morristown	7.92	3.60	4.32	220%
6. Mount Padbury	5.52	3.49	2.03	158%
7. Patwar Basalt	6.14	1.80	4.34	341%
8. Patwar Gabbro	8.43	2.67	5.76	315%
9. QUE-86900	10.92	3.24	7.68	337%
10. Simondium	9.17	3.27	5.90	280%
11. Veramin	13.13	2.71	10.42	484%

40Ar-39Ar Chronology

Dated in 2009 by scientists ${ }^{21}$ from Germany and Russia, these meteorite samples gave astounding results. Many dates were older than the evolutionist age of the Solar System, older than the galaxy and older than the Big Bang. ${ }^{22}$ Most age results were hundreds or thousands of percent discordant.

Table 6

Sample	Maximum	Minimum	Age Difference	Percent
Name	Million Years	Million Years	Million Years	Difference
Table A01. Dhofar 019 whole rock	$\mathbf{1 1 , 6 7 9}$	737	$\mathbf{1 0 , 9 4 2}$	$\mathbf{1 , 5 8 4 \%}$
Table A02. Dhofar 019 maskelynite	$\mathbf{1 0 , 5 2 1}$	$\mathbf{8 1 8}$	$\mathbf{9 , 7 0 3}$	$\mathbf{1 , 2 8 6 \%}$
Table A03. Dhofar 019 pyroxene	$\mathbf{1 0 , 7 3 0}$	$\mathbf{8 0 4}$	$\mathbf{9 , 9 2 6}$	$\mathbf{1 , 3 3 4 \%}$
Table A04. Dhofar 019 olivine	$\mathbf{1 0 , 4 8 7}$	$\mathbf{1 , 7 7 8}$	$\mathbf{8 , 7 0 9}$	$\mathbf{5 8 9 \%}$
Table A05. Dhofar 019 opaque	$\mathbf{1 4 , 9 1 7}$	$\mathbf{4 , 4 2 0}$	$\mathbf{1 0 , 4 9 7}$	$\mathbf{3 3 7 \%}$
Table A06. SaU 005 whole rock	$\mathbf{7 , 1 8 4}$	$\mathbf{5 6 8}$	$\mathbf{6 , 6 1 6}$	$\mathbf{1 , 2 6 4 \%}$
Table A07. SaU 005 glass	$\mathbf{6 , 2 3 5}$	$\mathbf{3 , 2 4 7}$	$\mathbf{2 , 9 8 8}$	$\mathbf{1 9 2 \%}$
Table A08. SaU 005 maskelynite	$\mathbf{7 , 4 3 2}$	$\mathbf{1 , 3 4 4}$	$\mathbf{6 , 0 8 8}$	$\mathbf{5 5 2 \%}$
Table A10. SaU 005 olivine	$\mathbf{1 3 , 9 7 9}$	$\mathbf{3 , 8 3 9}$	$\mathbf{1 0 , 1 4 0}$	$\mathbf{3 6 4 \%}$
Table A11. Shergotty whole rock	$\mathbf{8 , 5 4 2}$	$\mathbf{1 , 1 1 2}$	$\mathbf{7 , 4 3 0}$	$\mathbf{7 6 8 \%}$
Table A15. Zagami whole rock	$\mathbf{6 , 0 6 4}$	$\mathbf{9 4}$	$\mathbf{5 , 9 7 0}$	$\mathbf{6 , 4 5 1 \%}$
Table A16. Zagami maskelynite	$\mathbf{5 , 7 3 3}$	$\mathbf{2 3 8}$	$\mathbf{5 , 4 9 5}$	$\mathbf{2 , 4 0 8 \%}$
Table A18. Zagami opaque	$\mathbf{7 , 7 0 7}$	$\mathbf{2 9 0}$	$\mathbf{7 , 4 1 7}$	$\mathbf{2 , 6 5 7 \%}$
Table A9. SaU 005 pyroxene	$\mathbf{1 2 , 8 4 5}$	$\mathbf{1 , 3 5 4}$	$\mathbf{1 1 , 4 9 1}$	$\mathbf{9 4 8 \%}$

Shocked Meteorites: Argon-40/Argon-39

Dated in 1997 by scientists ${ }^{23}$ from Germany and France, these meteorite samples gave astounding results also. Many dates were older than the age of the Solar System, older than the galaxy and older than the Big Bang. ${ }^{24}$ Most age results that were hundreds or thousands of percent discordant.

Table 7

Sample	Maximum	Minimum	Difference	Percent
Name	Million Years	Million Years	Million Years	Difference
A. Rose City (H5/S6) host rock	4,766	193	4,573	2,469
B. Rose City (H5/S6) melt	4,529	2,126	2,403	213
C. Rose City (H5/S6) host rock \#1	3,876	231	3,645	1,678
D. Rose City (H5/S6) host rock \#2	3,259	293	2,966	1,112
E. Travis County (H5/S4) whole rock	3,614	295	3,319	1,225
F. Yanzhuang (H6/S6) host rock	5,598	65	5,533	8,612
G. Yanzhuang (H6/S6) melt fragment	10,217	1,902	8,315	537
H. Yanzhuang (H6/S6) melt vein	7,016	1,314	5,702	534
I. Alfianello (L6/S5) whole rock	3,470	968	2,502	358
J. Bluff (L6/S6) host rock	13,348	506	12,842	2,638
K. Bluff (L6/S6) melt	3,773	554	3,219	681
L. Mbale (L5-6) whole rock	3,531	466	3,065	758
M. McKinney (L4/S4-5) whole rock	1,821	499	1,322	365
N. Ness County (L6/S6) host rock \#I	5,052	987	4,065	512
O. Ness County (L6/S6) host rock \#2	6,668	1,997	4,671	334
P. Paranaiba (L6/S6) host mk \#I	3,332	453	2,879	736
Q. Paranaiba (L6/s6) host rock \#2	5,593	3,110	2,483	180
R. Taiban (L5/S6) host rock	2,845	492	2,353	578
S. Taiban (L5/S6) melt	1,435	156	1,279	920
T. Walters (L6/S4) host rock	3,452	1,592	1,860	217
U. Walters (L6/S4) melt	4,074	2,026	2,048	201
V. Beeler (LU/S4) host rock \#I	6,466	798	5,668	810
W. Beeler (LL6/S4) host rock \#2	6,609	1,491	5,118	443
X. ALHA 81011 (eucrite) clast	3,818	375	3,443	1,018
Y. ALHA 81011 (eucrite) melt	2,827	244	2,583	1,159

Potassium-Argon age of Iron Meteorites

If we compare the dates below with the previous two tables [Tables 6 and 7] we see that dating done on meteorites has not improved in fifty years! The dates below [Table 8] were dating done in 1958 by scientists from Brookhaven National Laboratory, Upton, New York. ${ }^{25}$ These dates ${ }^{26}$ are just as stupid as the previous two tables. The choice of 4.5 billion years as an "absolute" value is purely and arbitrary choice.

Meteorite Dating

Table 8

Meteorite	Age
K-Ar Dating	Billion Years
Mt. Ayliff	6.9
Arispe	6.8
H. H. Ninninger	6.9
Carbo	8.4
Canon Diablo I	8.5
Canon Diablo I	6.9
Canon Diablo I	6.6
Canon Diablo I	5.3
Canon Diablo II	13
Canon Diablo II	11
Canon Diablo II	10.5
Canon Diablo II	12
Toluca I	5.9
Toluca I	7.1
Toluca II	10
Toluca II	10.8
Toluca II	8.8

The Allende and Orgueil Chondrites

This rock was dated in 1976 by scientists from the United States Geological Survey, Denver, Colorado. ${ }^{27}$ Six were dated as being over ten billion years old. ${ }^{28}$ Two were dated as being as old as the Big Bang explosion. ${ }^{28}$ Fifty three dates were over five billion years. ${ }^{28}$ Below [Tables 9 and 10] we can see the strong discordance between the ${ }^{208} \mathrm{~Pb} /{ }^{232} \mathrm{Th}$ and ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ dating methods

Table 9

Pb-208/Th-232		
Maximum Age	14.40	Billion Years
Minimum Age	4.81	Billion Years
Average Age	6.40	Billion Years
Age Difference	9.59	Billion Years
Difference	299.38%	Percent
Standard Deviation	3.37	Billion Years

Table 10

Pb-206/U-238		
Maximum Age	9.86	Billion Years
Minimum Age	3.91	Billion Years
Average Age	6.02	Billion Years
Age Difference	5.95	Billion Years
Difference	252.17%	Percent
Standard Deviation	1.45	Billion Years

Precise U-Pb dating of Chondrites

This dating was done in 2005 by scientists from USA and Canada. ${ }^{29}$ Five dates were over five billion years old. ${ }^{30}$
Table 11

Maximum Age	6,473	Million Years
Minimum Age	$\mathbf{4 , 2 4 9}$	Million Years
Average Age	$\mathbf{4 , 6 7 5}$	Million Years
Age Difference	$\mathbf{2 , 2 2 4}$	Million Years
Difference	$\mathbf{1 5 2 \%}$	Percent

U-Pb Ages of Angrites

This dating was done in 2007 by scientists from Australia and Canada. ${ }^{31}$ Eight dates were older than the evolutionist age of the Solar System. ${ }^{32}$

Table 12

Sample	Pb-206/U-238
Name	Million Years
Angra dos Reis	
4W3	$\mathbf{5 , 5 3 5}$
5W3	$\mathbf{5 , 6 5 8}$
Lewis Cliff 86010	
10W3a	$\mathbf{6 , 0 7 2}$
11W3	$\mathbf{6 , 6 2 5}$
D'Orbigny	
15R	$\mathbf{4 , 8 4 2}$
16Ra	$\mathbf{4 , 8 9 3}$
17R	$\mathbf{4 , 6 9 5}$
18R	$\mathbf{4 , 9 7 2}$
19R	$\mathbf{5 , 0 8 0}$
20R	$\mathbf{4 , 9 5 7}$
21W3	$\mathbf{5 , 4 7 1}$
22W3	$\mathbf{5 , 2 9 1}$
23W3	$\mathbf{5 , 5 6 8}$

Argon Diffusion Properties

Dating done in 1980 of various meteorites gave many discordant values. ${ }^{32}$ Six were dated as older than the Solar System. ${ }^{33}$
Table 13

Meteor's	Maximum	Minimum	Percentage
Name	Billion Years	Billion Years	Difference
Wellman	5.2	3.737	139%
Wickenburg	3.005	0.568	$\mathbf{5 2 9 \%}$
Shaw	5.15	4.17	123%
Louisville	5.5	0.51	$1,078 \%$
Arapahoe	9.71	0.89	$1,091 \%$
Farmington	3.7	0.511	$\mathbf{7 2 4 \%}$
Lubbock	9.4	0.12	$\mathbf{7 , 8 3 3 \%}$
Orvinio	8.78	0.764	$1,149 \%$

Meteorite Dating

U-Th-Pb Dating of Abee E4 Meteorite

This dating was done in 1982 by scientists from the NASA, Johnson Space Center, Houston Texas and the U.S. Geological Survey, Denver, Colorado. ${ }^{35}$ The two table below [Table 14, 15] are a summary of Argon dating done on different meteorite samples. ${ }^{36}$ Both sample record dates older than the evolutionist age of the solar system. The original article has undated ${ }^{207} \mathrm{~Pb}{ }^{206} \mathrm{~Pb}$ ratios. If we run the through Isoplot ${ }^{37}$ we find the ratios ${ }^{38,39}$ give the results in tables 16 and 17. All are much older than the evolutionist age of the solar system.

Table 14

Abee clast 2, 2, 05		
Maximum Age	$\mathbf{7 , 2 0 0}$	Million Years
Minimum Age	$\mathbf{3 , 9 9 0}$	Million Years
Average Age	$\mathbf{4 , 6 4 0}$	Million Years
Age Difference	$\mathbf{3 , 2 1 0}$	Million Years
Difference	$\mathbf{1 8 0 \%}$	Percent
Standard Deviation	$\mathbf{8 4 0}$	Million Years

Table 15

Abee clast 3, 3, 06		
Maximum Age	$\mathbf{8 , 9 0 0}$	Million Years
Minimum Age	$\mathbf{3 , 5 8 0}$	Million Years
Average Age	$\mathbf{4 , 6 1 0}$	Million Years
Age Difference	$\mathbf{5 , 3 2 0}$	Million Years
Difference	$\mathbf{2 4 8 \%}$	Percent
Standard Deviation	$\mathbf{1 , 3 6 0}$	Million Years

Table 16

Meteorite	$\mathbf{P b - 2 0 6 / 2 0 7}$	Pb-206/207
Name	Ratio	Age
Abee 1	1.0992	5,370
	1.0945	5,364
	1.0947	5,364
	1.0330	5,283
Abee 2	1.1000	5,371
	1.0966	5,367
	0.8958	5,082
	1.0976	5,368
	1.0967	5,367
	1.0708	5,333

Table 17

Meteorite	Pb-207/206	Pb-207/206
Name	Ratio	Age
Abee 1	1.0993	5,370
	1.1005	5,372
	1.0994	5,370
Abee 2	1.1005	5,372
	1.0991	5,370
Abee 3	1.0999	5,371
	1.0993	5,370
Indarch	1.1005	5,372
St. Sauveur	0.7015	4,734
Canyon Diablo	1.1060	5,379

39Ar/40Ar Ages of Eucrites

These samples were dated in 2003 by scientists from the NASA Johnson Space Center, Houston, Texas, and the Lockheed-Martin Corporation, Houston, Texas. ${ }^{40}$ Ten of the meteorites were dated as being over five billion years old. ${ }^{41}$

Table 18

Meteorite	Maximum	Minimum	Difference	Percent
Sample	Million Years	Million Years	Million Years	Difference
A. OUE 97053,8	9,669	3,749	5,920	257\%
B. GRA 98098,26 WR	7,008	3,239	3,769	216\%
C. PCA - 82502,81	5,431	3,300	2,131	164\%
D. PCA - 91007,26	4,460	1,560	2,900	285\%
E. Caldera	4,493	2,819	1,674	159\%
F. Asuka-881388,55	4,853	3,250	1,603	149\%
G. Asuka-881467,42	4,465	202	4,263	2,210\%
H. GRO - 95533,7	4,096	2,823	1,273	145\%
I. OUE - 97014,5	4,553	2,947	1,606	154\%
J. Moama	4,484	866	3,618	517\%
K. EET - 87520	5,481	2,004	3,477	273\%
L. Moore County	6,742	1,827	4,915	369\%
M. Serra de Mage	6,100	499	5,601	1222\%
N. EET -87548	3,674	1,738	1,936	211\%
O. ALH -85001,32	4,754	3,097	1,657	153\%
P. Piplia Kalan	4,284	162	4,122	2644\%
Q. Sioux County	4,513	2,189	2,324	206\%
R. Asuka-87272,49	3,652	342	3,310	1067\%
S. Macibini Glass	5,788	2,621	3,167	220\%
T. QUE - 94200,13	3,724	3,169	555	117\%
U. EET - 87509,24	7,496	4,026	3,470	186\%
V. EET - 87509,71	4,449	3,558	891	125\%
W. EET -87509,74	4,645	873	3,772	532\%
X. EET - 87531,21	4,176	3,301	875	126\%
Y. EET - 87503,53	5,209	3,568	1,641	145\%
Z. EET - 87503,23	5,324	2,294	3,030	232\%

Argon-39/Argon-40 Ages

These samples were dated in 2003 by scientists from the NASA Johnson Space Center, Houston, Texas, and the Lockheed-Martin Corporation, Houston, Texas. ${ }^{42}$ The Monahans chondrite and halite was dated in 2001 as being over eight billion years old. ${ }^{43}$

Table 19

Maximum Age	$\mathbf{8 , 0 5 8}$	Million Years
Minimum Age	$\mathbf{3 , 8 9 9}$	Million Years
Average Age	$\mathbf{4 , 4 7 4}$	Million Years
Age Difference	$\mathbf{4 , 1 5 9}$	Million Years
Difference	$\mathbf{2 0 6 \%}$	Percent

Rb-Sr Ages Of Iron Meteorites

These samples were dated in 1967 by the California Institute of Technology, Pasadena, California. ${ }^{44}$ Even after 40 years of research and the massive improvement in laboratory equipment and computer technology, things today are just as bad as back then! Fourteen of the dates are five billion years or more. ${ }^{45}$

Table 20

Meteorite	Age
Rb-Sr Dating	Billion Years
Four Corners AM 1	8.4
	9.3
	9.1
	9.1
	8.5
	8.2
Four Corners AM 2-B1	5.0
	5.1
	4.8
Four Corners AM 2-B6	5.0
Four Corners H-1	5.0
Four Corners H-3	4.9
Four Corners N-1	5.2
Linwood H-B1	5.1
Odessa N1-8	4.9
	4.8
Toluca N-A3	5.0
	4.7
	4.9
	4.9
	5.1

40-Ar / 39-Ar Ages of Allende

Scientist from the Max-Planck-Institute, Heidelberg, Germany, dated these samples in 1980. ${ }^{46}$ Seven samples were dated as being over five billion years old. ${ }^{47}$

Table 21

Sample	Maximum	Minimum	Difference	Percentage
Name	Million Years	Million Years	Million Years	Difference
Sample 01	$\mathbf{4 , 4 5 5}$	$\mathbf{2 , 4 5 2}$	$\mathbf{2 , 0 0 3}$	$\mathbf{1 8 1 \%}$
Sample 02	$\mathbf{5 , 0 6 7}$	$\mathbf{3 , 0 2 7}$	$\mathbf{2 , 0 4 0}$	$\mathbf{1 6 7 \%}$
Sample 03	$\mathbf{4 , 9 1 9}$	$\mathbf{4 , 0 9 2}$	$\mathbf{8 2 7}$	$\mathbf{1 2 0 \%}$
Sample 04	$\mathbf{4 , 9 3 9}$	$\mathbf{4 , 3 6 3}$	$\mathbf{5 7 6}$	$\mathbf{1 1 3 \%}$
Sample 05	$\mathbf{4 , 6 9 1}$	$\mathbf{2 , 2 4 8}$	$\mathbf{2 , 4 4 3}$	$\mathbf{2 0 8 \%}$
Sample 06	$\mathbf{4 , 9 4 3}$	$\mathbf{4 , 1 0 2}$	$\mathbf{8 4 1}$	$\mathbf{1 2 0 \%}$
Sample 07	$\mathbf{4 , 8 3 5}$	$\mathbf{4 , 1 6 6}$	$\mathbf{6 6 9}$	$\mathbf{1 1 6 \%}$
Sample 08	$\mathbf{4 , 7 7 6}$	$\mathbf{4 , 2 0 7}$	$\mathbf{5 6 9}$	$\mathbf{1 1 3 \%}$
Sample 09	$\mathbf{5 , 0 0 4}$	$\mathbf{3 , 6 8 2}$	$\mathbf{1 , 3 2 2}$	$\mathbf{1 3 5 \%}$
Sample 10	$\mathbf{4 , 5 0 5}$	$\mathbf{1 , 8 7 1}$	$\mathbf{2 , 6 3 4}$	$\mathbf{2 4 0 \%}$
Sample 11	$\mathbf{4 , 7 0 7}$	$\mathbf{3 , 6 3 1}$	$\mathbf{1 , 0 7 6}$	$\mathbf{1 2 9 \%}$
Sample 12	$\mathbf{5 , 6 4 1}$	$\mathbf{4 , 3 3 0}$	$\mathbf{1 , 3 1 1}$	$\mathbf{1 3 0 \%}$
Sample 13	$\mathbf{4 , 5 4 9}$	$\mathbf{4 , 3 9 6}$	$\mathbf{1 5 3}$	$\mathbf{1 0 3 \%}$
Sample 19	$\mathbf{5 , 5 9 0}$	$\mathbf{4 , 1 1 0}$	$\mathbf{1 , 4 8 0}$	$\mathbf{1 3 6 \%}$
Sample 20	$\mathbf{5 , 8 1 2}$	$\mathbf{4 , 3 6 7}$	$\mathbf{1 , 4 4 5}$	$\mathbf{1 3 3 \%}$
Sample 21	$\mathbf{5 , 7 8 4}$	$\mathbf{4 , 2 5 6}$	$\mathbf{1 , 5 2 8}$	$\mathbf{1 3 5 \%}$
Sample 23	$\mathbf{7 , 4 6 0}$	$\mathbf{3 , 9 6 7}$	$\mathbf{3 , 4 9 3}$	$\mathbf{1 8 8 \%}$

The Fossil LL6 Chondrite

These meteorite fragments were dated in 2010 by scientists from Australia, South Africa, England and Finland. ${ }^{48}$ Some dates are over 4,000 percent discordant. ${ }^{49}$ The oldest dates are as old as the evolutionist age of the galaxy. ${ }^{49}$

Table 22

Sample	Maximum Age	Minimum Age	Age Difference	Percent
Name	Million Years	Million Years	Million Years	Difference
A	$\mathbf{2 , 0 6 5}$	164	$\mathbf{1 , 9 0 2}$	$\mathbf{1 , 2 6 3 \%}$
B	$\mathbf{2 , 8 4 9}$	$\mathbf{9 2 4}$	$\mathbf{1 , 9 2 5}$	$\mathbf{3 0 8 \%}$
C	$\mathbf{2 , 0 4 3}$	177	$\mathbf{1 , 8 6 7}$	$\mathbf{1 , 1 5 7 \%}$
D	$\mathbf{7 , 1 1 9}$	$\mathbf{1 7 4}$	$\mathbf{6 , 9 4 5}$	$\mathbf{4 , 0 8 2 \%}$
E	$\mathbf{3 , 8 8 9}$	$\mathbf{2 4 9}$	$\mathbf{3 , 6 4 0}$	$\mathbf{1 , 5 6 3 \%}$
F	$\mathbf{1 1 , 2 5 0}$	$\mathbf{5 , 4 7 5}$	$\mathbf{5 , 7 7 5}$	$\mathbf{2 0 5 \%}$

K/Ar Age Determinations of Iron Meteorites

This was dated in 1968 and produced ages between 1.5 and 7.4 billion years. ${ }^{50}$ Eight dates were older than the age of the Solar System. ${ }^{51}$ Comparing dating forty years ago with the latest dating techniques shows no improvement.

Table 23

Meteorite	Maximum	Minimum	Difference	Percentage
K-Ar Dating	Billion Years	Billion Years	Billion Years	Difference
Carthage 527	6.25	3.65	2.60	171.23%
Odessa 485	7.40	4.20	3.20	176.19%
Tombigbee River 602	6.35	4.85	1.50	130.93%

The Peace River Shocked M Chondrite

The meteorite was dated by scientists from the Physics Department, Sheffield University, United Kingdom. ${ }^{52}$ The dates listed in the original article ${ }^{53}$ are much older than the evolutionist age of the solar system. This was done in 1988. If you compare table 23 and table 24 in my essay you will see that after 20 years of research the dating is just as bad as day one.

Table 24

Sample	Maximum	Minimum	Difference	Percent
Name	Million Years	Million Years	Million Years	Difference
TABLE 1A	$\mathbf{3 , 1 7 6}$	$\mathbf{1 9 0}$	$\mathbf{2 , 9 8 6}$	$\mathbf{1 6 7 2 \%}$
TABLE 1B	$\mathbf{5 , 0 0 6}$	$\mathbf{4 2 2}$	$\mathbf{4 , 5 8 4}$	$\mathbf{1 1 8 6 \%}$
TABLE 2	$\mathbf{6 , 1 3 0}$	$\mathbf{9 5 0}$	$\mathbf{5 , 1 8 0}$	$\mathbf{6 4 5 \%}$
TABLE 4	$\mathbf{2 , 5 1 5}$	$\mathbf{5 0 0}$	$\mathbf{2 , 0 1 5}$	$\mathbf{5 0 3 \%}$
TABLE 5	$\mathbf{7 , 1 0 0}$	$\mathbf{5 1 0}$	$\mathbf{6 , 5 9 0}$	$\mathbf{1 3 9 2 \%}$

Ar-39/Ar-40 Dating of IAB Iron Meteorites

In 1979 this dating was carried out by the Department of Physics, University of California, Berkeley. ${ }^{54}$ One of the meteorites was dated at almost ten billion years old. ${ }^{55}$

Table 25

Maximum Age	$\mathbf{9 , 5 0 0}$	Million Years
Minimum Age	$\mathbf{4 , 4 6 0}$	Million Years
Average Age	$\mathbf{5 , 1 6 1}$	Million Years
Age Difference	$\mathbf{5 , 0 4 0}$	Million Years
Difference	$\mathbf{2 1 3 \%}$	Percent
Standard Deviation	$\mathbf{1 , 7 5 3}$	Million Years

Antarctic LL-Chondrites

This sample as dated in 1990 by the Department of Earth Sciences, Faculty of Science, Kobe University, Japan. ${ }^{56}$ Some were dated as being older than the evolutionist age of the Solar System. ${ }^{57}$

Table 26

Maximum Age	$\mathbf{7 , 3 3 0}$	Million Years
Minimum Age	$\mathbf{3 , 1 1 0}$	Million Years
Average Age	$\mathbf{4 , 4 1 0}$	Million Years
Age Difference	$\mathbf{4 , 2 2 0}$	Million Years
Difference	$\mathbf{2 3 5 \%}$	Percent
Standard Deviation	$\mathbf{9 5 0}$	Million Years

Single grain (U-Th)/He ages

This sample as dated in 2003 by the Department of Earth and Planetary Science, University of California, Berkeley. ${ }^{58}$ The dating of one rock produced dates that varied by over 300 percent. ${ }^{59}$

Table 27

Maximum Age	$\mathbf{4 , 9 0 9}$	Million Years
Minimum Age	$\mathbf{1 , 4 5 2}$	Million Years
Average Age	$\mathbf{4 , 0 9 1}$	Million Years
Age Difference	$\mathbf{3 , 4 5 7}$	Million Years
Difference	$\mathbf{3 3 8 \%}$	Percent

Resolution Reveals New Problems

A joint paper by scientist from Australia, USA, Denmark and France. ${ }^{60}$ It discusses why there is discord between dating done on meteorite samples. Below is a list of the five major points discussed in the article. ${ }^{61}$

Meteorite Dating

Table 28

Potential problem	Level of awareness and suggested actions
1	1
Presence of non-radiogenic Pb of unknown isotopic composition. The most important and common problem of all.	Recognized by most of the community. Better methods for removal of non-radiogenic $\mathbf{P b}$ are required.
2	2
Deviations from closed system evolution (loss of Pb , gain or loss of \mathbf{U}). Important and common.	Requires monitoring $\mathbf{U}-\mathbf{P b}$ concordance and studying distribution of U and radiogenic Pb .
3	3
Mis-identification of the processes that start or reset the isotopic clocks. Important and common.	Requires studying distribution of U and radiogenic Pb , improving experimental reference data set for element migration caused by diffusion, alteration and shock, and linking isotopic dating to the studies in mineralogy and petrology of meteorites.
4	4
Analytical problems (fractionation, instrumentspecific etc.) and blank subtraction. Important.	Problems are widely recognized. Ongoing analytical developments help to reduce them.
5	5
Fractionation of radiogenic Pb isotopes induced by leaching of alpha recoil tracks. Potentially important.	Recognized by some "terrestrial" geochronologists, less known to meteoriticists. Detailed experimental studies are required to understand the nature and extent of fractionation.

Fission-Track Ages Of Four Meteorites

Six different meteorites were dated in 1976 by scientists from the Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, Illinois. ${ }^{62}$ The dates [Table 29] varied by almost one thousand percent! ${ }^{63}$ If we look at table 30 we can see the four methods used [Fission Track, Potassium-Argon, Uranium-Helium and Rubidium-Strontium] and the discordance between them. ${ }^{63}$

Table 29

Sample	Maximum Age	Minimum Age	Age Difference	Percent
Name	Billion Years	Billion Years	Billion Years	Difference
Bondoc	1.30	0.14	1.16	929%
Mincy	3.93	1.50	2.43	262%
Nakhla	4.40	0.77	3.63	571%
Serra	2.70	0.54	2.16	500%
Washougal	4.60	4.00	0.60	115%
Allende	4.50	3.60	0.90	125%

Table 30

Meteorite	Fission Track	K-Ar	U-He	Rb-Sr
Name	Billion Years	Billion Years	Billion Years	Billion Years
Bondoc	0.14	1.30	0.60	
Mincy	1.50	3.93		
Nakhla	4.40	1.30	0.77	3.60
Serra	0.54	2.70		
Washougal	4.60	4.00		
Allende	4.50	4.40		3.60

Discordant Meteorite Ages

Many dates are highly discordant and give different ages for the one meteorite. Meteorite Dar al Gani was dated in 2004 by scientists from Italy and England. ${ }^{64}$

Meteorite Dar al Gani ${ }^{65}$

Maximum Age	$\mathbf{3 , 7 2 5}$	Million Years
Minimum Age	$\mathbf{1 , 7 4 9}$	Million Years
Average Age	$\mathbf{3 , 1 2 0}$	Million Years
Age Difference	$\mathbf{1 , 9 7 6}$	Million Years
Difference	$\mathbf{2 1 3 \%}$	Percent

Table 31
The Kirin Chondrite was dated in 1981 by scientists from the Research School of Earth Sciences, The Australian National University. Canberra. ${ }^{66}$

The Kirin Chondrite ${ }^{67}$

Maximum Age	$\mathbf{4 , 3 1 0}$	Million Years
Minimum Age	$\mathbf{5 2 0}$	Million Years
Average Age	$\mathbf{3 , 1 6 0}$	Million Years
Age Difference	$\mathbf{3 , 7 9 0}$	Million Years
Difference	$\mathbf{8 2 8 \%}$	Percent
Table 32		

The Acapulco Meteorite was dated in 2003 by scientists from the Department of Earth and Planetary Science, University of California, Berkeley. ${ }^{68}$
(U-Th)/He ages from Acapulco Meteorite ${ }^{69}$

(U-Th)/He ages from Acapulco Meteorite			
Maximum Age	$\mathbf{4 , 9 0 9}$	Million Years	
Minimum Age	$\mathbf{1 , 4 5 2}$	Million Years	
Average Age	$\mathbf{4 , 0 9 1}$	Million Years	
Age Difference	$\mathbf{3 , 4 5 7}$	Million Years	
Difference	$\mathbf{3 3 8 \%}$	Percent	

Table 33

Kyoungwon Min admits that the dating of the Acapulco meteorite is extremely discordant: "Note that seven out of 12 corrected ages are older than the age of the solar system." ${ }^{70}$ The diagram above is taken from his work. ${ }^{70}$

These whole rock nakhiltes were dated in 2004 by scientists from the Lunar and Planetary Laboratory, University of Arizona,
Tucson, Arizona. ${ }^{71}$

40Ar-39Ar Studies of Whole Rock Nakhlites ${ }^{72}$

Table	Maximum	Minimum	Difference	Difference
Number	Million Years	Million Years	Million Years	Percent
Table 1	1,405	262	1,143	536%
Table 2	1,409	199	1,210	708%
Table 3	1,425	761	664	187%

Table 34

The Kirin Chondrite was dated in 1980 by scientists from the Research School of Earth Sciences, The Australian National University. Canberra. ${ }^{73}$

History Of The Kirin Chondrite ${ }^{74}$

Table	Maximum	Minimum	Difference	Difference
Number	Billion Years	Billion Years	Billion Years	Percent
Kirin-1	4.36	2.16	2.2	102%
Kirin-2	4.06	0.48	3.58	746%

Table 35

Uranium-Thorium-Lead Dating Of Shergotty Phosphates

This dating was done in 2000 by scientists from the Department of Earth and Planetary Sciences, Hiroshima University, Japan and the Planetary Geosciences Institute, Department of Geological Sciences, University of Tennessee. ${ }^{75}$ According to isochron diagrams in the original article, the meteorite's true age is 200 million years old. ${ }^{76}$ If we take the list of ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios in this article ${ }^{77}$ and run them through Isoplot we get the dates as shown in table 36 below.

Table 36

Sample	Pb-207/206	Pb-207/206
Name	Ratio	Age
SHR04.1	0.889	5,071
SHRO5.1	0.916	5,114
SHR06.1	0.788	4,900
SHR13.1	0.876	5,051
SHRI5.1	0.833	4,979
SHR16.1	0.869	5,039
SHR19.1	0.821	4,959
SHR21.1	0.842	4,994
SHR26.1	0.922	5,123
SHR26.2	0.831	4,976
SHR27.1	0.867	5,036
SHR28.1	0.813	4,945
SHR29.1	0.827	4,969

Ion microprobe $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ dating

This dating was done in 2000 by scientists from the Department of Earth and Planetary Sciences, Hiroshima University, Japan. ${ }^{78}$ According to isochron diagrams in the original article, the meteorite's true age is between 1200 and 1700 million years old. ${ }^{79}$ If we take the list of ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios in this article ${ }^{80}$ and run them through Isoplot we get the dates as shown in table 37 below.

Table 37

Sample	Pb-207/206	Pb-207/206
Name	Ratio	Age
LAFA01.01	0.7907	4,905
LAFA03.01	0.3969	$\mathbf{3 , 8 9 7}$
LAFA04.01	0.6561	4,637
LAFA04.02	0.6639	4,654
LAFA04.03	0.6898	4,710
LAFA05.01	0.7999	4,922
LAFA08.01	0.4505	4,087
LAFA09.01	0.7126	4,756
LAFA10.01	0.6506	4,625
Y-000593.1	0.9029	5,093
Y-000593.2	0.7225	4,776
Y-000593.3-1	1.0819	5,348
Y-000593.3-2	0.8453	5,000
Y-000593.4	0.7097	4,750
Y-000593.5	0.6311	4,581
Y-000749.1	0.7842	4,893
Y-000749.3	0.9092	5,103
Y-000749.4	0.7529	4,835
Y-000749.5-1	0.8569	5,019

The Chondritic Meteorite Orvinio

Scientists from Arizona, Massachusetts, New Mexico and Florida performed this dating in 2004. ${ }^{81}$ Four of the meteorites dated to be older than the evolutionist age of the Solar System. ${ }^{82}$ One date to be older than the Big Bang. ${ }^{82}$ The discordance between dates varied from hundreds to thousands of percent in error. ${ }^{82}$

Table 38

Table	Max Age	Min Age	Difference	Percentage
Name	Million Years	Million Years	Million Years	Difference
A1	$\mathbf{1 7 , 1 7 8}$	$\mathbf{5 7 0}$	$\mathbf{1 6 , 6 0 8}$	$\mathbf{2 , 9 1 4 \%}$
A2	$\mathbf{3 , 6 6 0}$	$\mathbf{3 2 4}$	$\mathbf{3 , 3 3 6}$	$\mathbf{1 , 0 3 0 \%}$
A3	$\mathbf{3 , 7 2 0}$	$\mathbf{7 0 3}$	$\mathbf{3 , 0 1 7}$	$\mathbf{4 2 9 \%}$
A4	$\mathbf{7 , 8 0 0}$	$\mathbf{9 0 4}$	$\mathbf{6 , 8 9 6}$	$\mathbf{7 6 3 \%}$
A5	$\mathbf{7 , 1 0 0}$	$\mathbf{9 2 2}$	$\mathbf{6 , 1 7 8}$	$\mathbf{6 7 0 \%}$
A6	$\mathbf{8 , 5 0 0}$	$\mathbf{5 2 6}$	$\mathbf{7 , 9 7 4}$	$\mathbf{1 , 5 1 6 \%}$

Martian Meteorite Chronology

This meteorite was dated in 2011 by scientists from the Lawrence Livermore National Laboratory, Physical and Life Sciences, Institute of Geophysics and Planetary Physics, California and the Department of Earth and Planetary Sciences, University of New Mexico. ${ }^{83}$ The article states that the meteorite's true age is 3.6 billion years. ${ }^{84}$ If we take the list of ${ }^{207} \mathrm{~Pb}{ }^{206} \mathrm{~Pb}$ ratios in this article ${ }^{85}$ and run them through Isoplot we get the dates as shown in table 39 below.

Table 39

Sample	Pb-207/206	Pb-207/206
Name	Ratio	Age
Plag(R)	0.751287431	$\mathbf{4 , 8 3 2}$
Plag(L)	0.787456711	$\mathbf{4 , 8 9 9}$
Px(R)	0.580150952	$\mathbf{4 , 4 5 9}$
Px(L)	0.699212521	4,729
WR(R)	0.480536633	$\mathbf{4 , 1 8 3}$
WR(L)	0.489632855	$\mathbf{4 , 2 1 0}$
Ilm	0.498182294	$\mathbf{4 , 2 3 6}$
Heated Sample		
Plag(R)	0.773980154	$\mathbf{4 , 8 7 5}$
Plag(L)	0.640266469	$\mathbf{4 , 6 0 2}$
Plag-rej	0.61697479	$\mathbf{4 , 5 4 8}$
Px(R)	0.655620155	$\mathbf{4 , 6 3 6}$
Px(L)	0.623966942	$\mathbf{4 , 5 6 5}$
Px-rej	0.565672185	$\mathbf{4 , 4 2 2}$
WR(R)	0.500867867	$\mathbf{4 , 2 4 4}$
WR(L)	0.515289324	$\mathbf{4 , 2 8 6}$
Ilm	0.498417311	$\mathbf{4 , 2 3 7}$
NBS-981	0.913501361	$\mathbf{5 , 1 1 0}$
Faraday-Daly	0.913967671	$\mathbf{5 , 1 1 1}$

${ }^{39} \mathrm{Ar} /{ }^{40} \mathrm{Ar}$ "ages" in Martian Shergottites

I downloaded this table from the official Meteoritics website. ${ }^{86}$ Six of the meteorites were dated as being well over five billion years old. One was dated as being as old as the evolutionist age of the Milky Way Galaxy. ${ }^{86}$

Table 40

Sample	Max Age	Min Age	Difference	Percentage
Name	Million Years	Million Years	Million Years	Difference
Los Angeles Plag	4,569	183	4,387	2,404\%
Los Angeles, WR	1,270	156	1,114	714\%
Los Angeles Pyx	7,432	581	6,851	1,180\%
NWA-3171 Plag	2,484	203	2,281	1,121\%
NWA-3171 Glass	2,056	299	1,757	588\%
NWA-2975 Plag	5,709	262	5,447	2,080\%
Dhofar 019 Plag	10,150	453	9,697	2,140\%
Dhofar 019 WR	7,791	614	7,177	1,170\%
DaG476 Plag	3,378	432	2,946	681%
DAG 476 WR	5,889	980	4,909	501\%
DaG476-Px-Dark	7,975	1,746	6,229	357\%
DaG476-Px-Light	4,117	391	3,726	953\%
NWA-1068 WR	2,524	61	2,463	4,043\%
SAU-005 WR	3,988	-0.4619	3,988	863,490\%
Y-980459 WR	1,784	583	1,201	206\%

Argon Dating Of Chondrites

I downloaded this table from the official Meteoritics website. ${ }^{87}$ Four of the meteorites were dated as being well over five billion years old. One was dated as being older than the evolutionist age of the Milky Way Galaxy. ${ }^{87}$

Table 41

Meteorite	Maximum Age	Minimum Age	Difference	Percentage
Name	Billion Years	Billion Years	Billion Years	Difference
Caddo \#5	12.55	4.22	8.33	197%
EET833,5	6.82	2.21	4.60	208%
Udei Station	4.52	1.43	3.09	216%
Campo del Cielo	7.71	3.40	4.31	127%
Kendall Co.	7.59	2.06	5.53	269%

Isotopic Lead Ages Of Meteorites

This dating was done in 1973 by scientist from Switzerland and California. ${ }^{88}$ The dates ${ }^{89}$ below in table 42 give numerous values much older than the so called age of the Solar System.

Table 42

Meteorite	206Pb/238U	207Pb/235U	207Pb/206Pb
Name	Million Years	Million Years	Million Years
Bruderheim-1	$\mathbf{4 1 2 6}$	$\mathbf{4 4 4 7}$	$\mathbf{4 6 4 7}$
Bruderheim-2	$\mathbf{4 5 4 2}$	$\mathbf{4 5 9 2}$	$\mathbf{4 6 2 8}$
Bruderheim-3	4959	4703	4605
Richardton-1	$\mathbf{8 6 1 5}$	$\mathbf{5 6 0 2}$	$\mathbf{4 6 0 4}$
			$\mathbf{4 , 6 3 8}$
Richardton-2	$\mathbf{6 8 3 4}$	5230	$\mathbf{4 6 3 3}$
Pultusk	5334	$\mathbf{4 9 3 9}$	$\mathbf{4 6 5 7}$
			$\mathbf{4 , 6 5 1}$

If we take the list of ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios in this article ${ }^{90}$ and run them through Isoplot we get the dates as shown in table 39 below.
Table 43

Meteorite	206Pb/204Pb	207Pb/204Pb	207Pb/206Pb	207Pb/206Pb
Name	Amount	Amount	Ratio	Age
Allende-I	1,064	1,088	1.0226	5,269
Allende-II	1,012	1,078	1.0652	5,326
Murchison	977	1,056	1.0809	5,346
	985	1,062	1.0782	5,343
Mezo-Madaras	9,449	10,384	1.0990	5,370
	9,444	10,356	1.0966	5,367
Bruderheim-I	3,562	2,683	0.7532	4,836
Bruderheim-II	3,023	2,327	0.7698	4,867
Bruderheim-III	3,275	2,469	0.7539	4,837
	3,733	2,741	0.7343	4,799
Richardton-I	2,155	1,794	0.8325	4,978
	2,187	1,796	0.8212	4,959
Richardton-II	2,228	1,827	0.8200	4,957
	2,571	2,050	0.7974	4,917
Pultusk	2,045	1,732	0.8469	5,003
	2,180	1,820	0.8349	4,982

U-Pb and ${ }^{207} \mathrm{~Pb}^{-{ }^{206}} \mathbf{P b}$ ages of Eucrites

This dating was done in 2005 by scientists from the Antarctic Meteorite Research Centre, Tokyo, Japan. ${ }^{91}$ Several dates ${ }^{92}$ give ages much greater than the "absolute age" of 4.5 billion years for the age of the Solar System.

Table 44

Meteorite	Maximum	Minimum	Average
Name	Million Years	Million Years	Million Years
Yamato-75011	$\mathbf{5 , 0 7 0}$	$\mathbf{4 , 5 4 8}$	$\mathbf{4 , 8 6 3}$
Yamato-	$\mathbf{5 , 3 0 0}$	$\mathbf{4 , 6 1 3}$	$\mathbf{4 , 8 9 9}$
$\mathbf{7 9 2 5 1 0}$	$\mathbf{4 , 8 2 5}$	$\mathbf{3 , 8 4 7}$	$\mathbf{4 , 4 0 4}$
Asuka-881388	$\mathbf{4 , 9 1 1}$	$\mathbf{4 , 5 6 9}$	$\mathbf{4 , 6 7 3}$
Asuka-881467	$\mathbf{5 , 2 2 3}$	$\mathbf{3 , 1 0 2}$	$\mathbf{4 , 5 3 7}$
Padvalninkai			

${ }^{40} \mathrm{Ar}^{3}{ }^{39} \mathrm{Ar}$ Dating Of Desert Meteorites

Dated in 2005 by scientists ${ }^{93}$ from Germany and Russia, these meteorite samples gave astounding results. Many dates were older than the evolutionist age of the Solar System. ${ }^{94}$

Table 45

Sample Name	Million Years
Table A1. Dhofar 007 whole rock.	$\mathbf{7 , 6 3 2}$
	$\mathbf{6 , 0 3 3}$
	$\mathbf{5 , 4 9 8}$
Table A2. Dhofar 007 plagioclase.	$\mathbf{7 , 5 8 2}$
	$\mathbf{7 , 0 1 1}$
	$\mathbf{4 , 7 5 3}$
	$\mathbf{4 , 7 4 1}$
Table A3. Dhofar 300 whole rock.	$\mathbf{9 , 0 1 5}$
	$\mathbf{8 , 4 8 5}$
	$\mathbf{5 , 5 1 6}$
	$\mathbf{5 , 1 3 7}$
Table A5. Dhofar 300 pyroxene	$\mathbf{8 , 9 5 7}$
	$\mathbf{6 , 0 6 4}$
	$\mathbf{5 , 6 5 6}$
	$\mathbf{4 , 9 9 8}$
Table A5. Dhofar 300 plagioclase.	$\mathbf{4 , 7 2 0}$
	$\mathbf{9 , 6 8 0}$
	$\mathbf{5 , 7 9 3}$
	$\mathbf{5 , 7 2 1}$
	$\mathbf{5 , 3 9 5}$
	$\mathbf{5 , 0 3 5}$

Northwest Africa 482

These meteorites were dated in 2002 by scientists from the Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona. ${ }^{95}$ Many dates were older than the evolutionist age of the Solar System. ${ }^{96}$

Table 46

Bulk Sample	Million Years
	$\mathbf{9 , 6 7 0}$
	$\mathbf{8 , 5 6 0}$
	$\mathbf{8 , 1 2 7}$
	$\mathbf{6 , 2 5 6}$
Glass Sample	Million Years
	$\mathbf{9 , 9 0 5}$
	$\mathbf{7 , 3 8 8}$
	$\mathbf{5 , 7 0 8}$

Conclusion

Brent Dalrymple states in his anti creationist book The Age of the Earth: "Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{97}$

Looking at some of the dating it is obvious that precision is much lacking. He then goes on: "Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." 98

I his book he gives a table ${ }^{99}$ with radiometric dates of twenty meteorites. If you run the figures through Microsoft Excel, you will find that they are 98.7% in agreement. There is only a seven percent difference between the ratio of the smallest and oldest dates. As we have seen in this essay, such a perfect fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best.

The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

1	$\frac{\text { http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html }}{\text { The age of } 10 \text { to } 15 \text { billion years for the age of the Universe. }}$
2	$\underline{\text { http://en.wikipedia.org/wiki/Age_of_the_universe }}$
3	http://arxiv.org/pdf/1001.4744v1.pdf Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
5	$\underline{\text { http://en.wikipedia.org/wiki/Age_of_the_Earth }}$
http://sp.lyellcollection.org/content/190/1/205 The age of the Earth, G. Brent Dalrymple Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221	
6	The age of the earth, Gérard Manhes Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382

http://arxiv.org/pdf/astro-ph/0506458v1.pdf
The age of the Galactic disk, By E. F. del Peloso and L. da Silva
Astronomy \& Astrophysics, Manuscript no. 3307, February 2, 2008
Paul Pellas, History Of The Acapulco Meteorite, Geochemica Et Cosmochemica Acta, 1997, Volume 61, Number 16, pp. 3477-3501
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Pellas.pdf
Reference 8, Page 3500
L. Rancitelli, Potassium: Argon Dating of Iron Meteorites, Science, 1967, Volume 155, Pages 999-1000
C:\Essays\Geo_Dating\Age_Earth\Meteor_Rancitelli.pdf
Reference 10, Page 999
R. W. Stoenner and J. Zahringer, Geochimica et Cosmochimica Acta, 1958, Volume 15, Page 40.

Reference 10, Page 1000
Yuri Amelin, Pb isotopic age of the Allende Chondrules, Meteoritics And Planetary Science, 2007, Volume 42, Numbers 7/8, Pages 1321-1335
C:\Essays\Geo_Dating\Age_Earth\Amelin_C.pdf
Reference 14, Page 1524
J. L. Birck, Rhenium-187-Osmium-187 in iron meteorites, Meteoritics And Planetary Science, 1998, Volume 33, Pages 641-453
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Birck.pdf
Reference 16, Page 649
D. D. Bogard, Ar-39, Ar-40 Dating of Mesosiderites, Geochemica Et Cosmochemica Acta, 1990, Volume 54, pages 2549-2564
C:\Essays\Geo_Dating\Age_Earth\BOGARD_A.pdf
Reference 18, Page 2563, 2564
Reference 18, Page 2551
Ekaterina V. Korochantseva, 40Ar-39Ar Chronology, Meteoritics And Planetary Science, 2009, Volume 44, Number 2, Pages 293-321
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Korochantseva.pdf
Reference 20, Pages 316 to 321
Joachim Kunz, Shocked meteorites: Argon-40-Argon-39, Meteoritics And Planetary Science, 1997, Volume 32, Pages 647-670
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Kunz.pdf
Reference 21, Pages 664 to 670
R. W. Stoenner, Potassium-argon age of iron meteorites, Geochemica Et Cosmochemica Acta, 1958, Volume 15, Pages 40-50
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Stoenner.pdf
Reference 25, Pages 45 to 46

Meteorite Dating

Mitsunobu Tatsumoto, The Allende and Orgueil Chondrites, Geochemica Et Cosmochemica Acta, 1976, Volume 40, pages 617-634
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Tatsumoto.pdf
Reference 27, Page 627
Yuri Amelin, Precise U-Pb dating of Chondrites, Geochemica Et Cosmochemica Acta, 2005, Volume 69, Number 2, pages 505-518
C:\Essays\Geo_Dating\Age_Earth\Amelin_A.pdf
Reference 29, Page 509
Yuri Amelin, U-Pb ages of angrites, Geochemica Et Cosmochemica Acta, 2008, Volume 72, Pages 221-232
C:\Essays\Geo_Dating\Age Earth\Amelin_D.pdf
Reference 31, Page 225
D. D. Bogard, Ar Diffusion Properties, Meteorites, Geochemica Et Cosmochemica Acta, 1980, Volume 44, Pages 1667-1682
C:\Essays\Geo_Dating\Age_Earth\BOGARD_B.pdf
Reference 31, Pages 1670, 1671
D. D. Bogard, U-Th-Pb dating of Abee E4 Meteorite, Earth and Planetary Science Letters, 1983, Volume 62, Pages 132-146
C:LEssays\Geo_Dating\Age_Earth\BOGARD_C.pdf
Reference 35, Page 134, 135
http://www.bgc.org/isoplot_etc/isoplot.html
Reference 35, Page 139
Reference 35, Page 142
D. D. Bogard, 39Ar/40Ar Ages of Eucrites, Meteoritics And Planetary Science, 2003, Volume 38, Number 5, Pages 669-710
C:\Essays\Geo_Dating\Age_Earth\BOGARD_E.pdf
Reference 39, Pages 699 to 710
D. D. Bogard, Argon-39/Argon-40 Ages, Meteoritics And Planetary Science, 2001, Volume 36, Pages 107-122 C:\Essays\Geo_Dating\Age_Earth\BOGARD_F.pdf

Reference 42, Pages 120-122
D. S. Burnett, Rb-Sr Ages Of Iron Meteorites, Earth and Planetary Science Letters, 1967, Volume 2, Pages 397-408
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Burnett.pdf
Reference 44, Pages 401, 402
Elmar K. Jessberger, 40-Ar/39-Ar Ages of Allende, Icarus, 1980, Volume 42, pages 380-405
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Jessberger.pdf
Reference 46, Pages 390-403
F. Jourdan, The Fossil LL6 Chondrite, Geochemica Et Cosmochemica Acta, 2010, Volume 74, Pages 1734 - 1747 C:\Essays\Geo Dating\Age_Earth\Meteorite_JOURDAN.pdf

Reference 48, Page 1738-1739

Meteorite Dating

W. Kaiser, K/Ar Age Determinations of Iron Meteorites, Earth and Planetary Science Letters, 1968, Volume 4, pages 84-88
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Kaiser.pdf
Reference 50, Page 86
P. McConville, The Peace River shocked M chondrite, Geochemica Et Cosmochemica Acta, 1988, Volume 52, Pages 2487-2499
C:\Essays\Geo_Dating\Age_Earth\Meteorite_MCCONVILL.pdf
Reference 52, Pages 2489, 2490, 2493, 2494
Sidney Niemeyer, Ar-39/Ar-40 dating of IAB iron meteorites, Geochemica Et Cosmochemica Acta, 1979, Volume 43, Pages 1829-1840
C:\Essays\Geo_Dating\Age_Earth\Meteorite_NIEMEYER.pdf
Reference 54, Page 1834
Osamu Okano, Antarctic LL-chondrites, Geochemica Et Cosmochemica Acta, 1990, Volume 54, Pages 3509-3523 C:\Essays\Geo_Dating\Age_Earth\Meteorite_Okano.pdf

Reference 57, Page 3510
Kyoungwon Min, Single grain (U-Th)/He ages, Acapulco meteorite, Earth and Planetary Science Letters, 2003, Volume 209, pages 323-336
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Kyoungwon.pdf
Reference 57, Page

Yuri Amelin, Resolution Reveals New Problems, Geochemica Et Cosmochemica Acta, 2009, Volume 73, Pages 5212-5223
C:\Essays\Geo_Dating\Age_Earth\Amelin_B.pdf
Reference 60, Page 5215
Eugene A. Carver, Fission-track ages of four meteorites, Geochemica Et Cosmochemica Acta, 1976, Volume 40, Pages 467-477
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Carver.pdf
Reference 62, Page 475

Luigi Folco, Meteorite Dar al Gani 896, Geochemica Et Cosmochemica Acta, 2004, Volume 68, Number 10, Page 2383
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Folco.pdf
Reference 64, Page 2383
T. Mark Harrison, The Kirin Chondrite, Geochemica Et Cosmochemica Acta, 1981, Volume 45, Pages 2514

C:\Essays\Geo_Dating\Age_Earth\Meteorite_HARRISON.pdf
Reference 66, Page 2514
Kyoungwon Min, (U-Th)/He ages from Acapulco meteorite, Earth And Planetary Science Letters, 2003, Volume 209, Pages 328
C:\Essays\Geo_Dating\Age_Earth\Meteorite_Min.pdf
Reference 66, page 328
Reference 66, page 332

Meteorite Dating

Timothy D. Swindle, 40Ar-39Ar Studies of Whole Rock Nakhlites, Meteoritics And Planetary Science, 2004, Volume 39, Number 5, Pages 764-766
C:\Essays\Geo Dating\Age_Earth\Meteorite_Swindle.pdf
Reference 66, page 764-766
Sungshan Wang, History Of The Kirin Chondrite, Earth And Planetary Science Letters, 1980, Volume 49, Pages 117-131
C:\Essays\Geo_Dating\Age_Earth\Meteorite_WANG.pdf
Reference 73, page 120
Uranium-Thorium-Lead Dating Of Shergotty Phosphates, Mereoritics And Planetary Science, 2000, Volume 35, Pages 341-346
C:\Essays\Geo_Dating\Meteorites\Pb-206-01.pdf
Reference 75, Page 343, 344
Reference 75, Page 342
Ion microprobe U-Th-Pb Dating, Meteoritics \& Planetary Science, 2004, Volume 39, Number 12, Pages 2033-2041 C:\Essays\Geo_Dating\Meteorites $\backslash \mathbf{P b}-206-04 . p d f$

Reference 78, Page 2035, 2037
Reference 78, Page 2036
The Chondritic Meteorite Orvinio, Meteoritics \& Planetary Science, 2004, Volume 39,
Number 9, Pages 1475-1493
C:\Essays\Geo_Dating\Meteorites\Pb-206-05.pdf
Reference 82, Page 1488-1493
Martian Meteorite Chronology, Meteoritics \& Planetary Science, 2011, Volume 46, Number 1, Pages 35-52
C:\Essays\Geo_Dating\Meteorites\Pb-206-06.pdf
Reference 84, Page 41
Reference 84, Page 47
D. Bogard, ${ }^{39} \mathrm{Ar}^{-40} \mathrm{Ar}$ "ages" and origin of excess ${ }^{40} \mathrm{Ar}$ in Martian shergottites http://meteoritics.org/Online\% 20Supplements/MAPS1080_Electronic-Annex.doc

Meteoritics \& Planetary Science, Volume 40, Issue 2, February 2005
http://meteoritics.org/Online\% 20Supplements/Ar-XeData_Bogard.xls
G. R. Tilton, Isotopic Lead Ages Of Meteorites, Earth And Planetary Science Letters, 1973, Volume 19 Pages 321329
C:\Essays\Geo_Dating\Meteorites\Pb-206-14.pdf
Reference 89, Page 328
Reference 89, Page 323
U-Pb and ${ }^{207}{ }^{\mathbf{P b}}{ }^{206} \mathbf{P b}$ ages of Eucrites, Geochimica et Cosmochimica Acta, 2005, Volume 69, Number 24, Pages 5847-5861.
C:\Essays\Geo_Dating\Meteorites\To_Old_07.pdf
Reference 92, Pages 5852-5853
Meteoritics \& Planetary Science, 2005, Volume 40, Number 9/10, Pages 433-1454

C:\Essays\Geo_DatinglVery_Old_RockslVery_Old_02.pdf

Reference 94, Pages 1452-1454
Meteoritics \& Planetary Science, 2002, Volume 37, Pages 1797-1813
C:\Essays\Geo_Dating\Very_Old_RockslVery_Old_04.pdf
Reference 96, Page 1806
The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.
Reference 98, Page 23

Reference 98, Page 287
Reference 98, Page 342

www.creation.com

Rocks With Negative Dates

By Paul Nethercott
August 2013

Introduction

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." 4 "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

1. Ion Microprobe U-Pb Dating

These rocks from Japan were dated ${ }^{8}$ in 2001 using the Rubidium/Strontium and Potassium/Argon method. If we run the isotopic ratios through Isoplot ${ }^{9}$ and use formulas listed in standard geology books ${ }^{10}$ we find that the rock samples ${ }^{11}$ gave ages between 5 billion years and negative years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be older than the Earth? The author admits some of the dates are negative: "Though a negative age has no practical use, it does suggest that it is younger than 0.12 Ma." ${ }^{12}$

Table 1

Table 2	Age	Age	Age
Data	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	Ratio
Average	$\mathbf{6 2}$	$\mathbf{4 , 7 1 0}$	$\mathbf{7 6}$
Maximum	$\mathbf{6 3 1}$	$\mathbf{5 , 1 3 5}$	$\mathbf{8}$
Minimum	$\mathbf{0}$	$\mathbf{3 , 7 7 1}$	$\mathbf{3 7 7 1}$

Table 2

Table 3	Age	Age	Age
Data	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	Ratio
Average	$\mathbf{0 . 8 8}$	4,742	5,388
Maximum	2.91	4,978	$\mathbf{1 , 7 1 0}$
Minimum	$\mathbf{0 . 2 5}$	$\mathbf{4 , 4 7 9}$	$\mathbf{1 7 , 9 1 6}$

2. The Long Valley Rhyolitic

These rocks from California were dated ${ }^{13}$ in 1997 using the Rubidium/Strontium and Potassium/Argon method. The rock samples gave ages between 1 million years and negative years old! Since the Earth exists in the present how can rocks have formed in the future? The author admits some of the dates are negative:
"The negative ages are a clear indication that some phases have not reached Sr isotope equilibration with their current host glass." ${ }^{14}$
"In contrast, feldspars from the second group yield mineral ages that are geologically unreasonable ranging from close to the eruption age of the Bishop Tuff to negative ages." ${ }^{15}$

3. Rn-Generated 206Pb

These rocks from South Africa were dated ${ }^{16}$ in 1998 using the Uranium/Lead method. When we run the ratios ${ }^{17}$ through Isoplot the rock samples gave ages between 543 and 6,400 million years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be older than the Earth? According to the article the true age is between 2 and 2.6 billion years old: "Assigning a 2.02 Ga age of mineralization and constructing secondary isochrons for paragenetically early galena and chalcopyrite, ages of the source uraninite are calculated as 2.6-2.4 Ga." ${ }^{18}$

Table 3	
Age	Age
Pb 207/206	Pb 207/206
6451	5799
6330	5763
6315	5735
6217	5723
6109	5711
6009	4966

The author admits some of the dates are negative: "Analyses lying even farther to the fight, with the implication of implausibly young and even negative ages, force us to consider alternative explanations for this subsidiary array." ${ }^{19}$

4. 40Argon/39 Argon Age of a Tholeiitic Basalt

These rocks from California were dated ${ }^{20}$ in 2006 using the Argon method. The rock samples gave ages ${ }^{21}$ between 2,357 and -579 thousand years old! Since the Earth exists in the present how can rocks have formed in the future?

Table 4

Sample	Minimum	Maximum	Difference	Ratio
Cinder Butte	-579.3	56.7	636	$1,022 \%$
Andesite of Sugarloaf Peak	14.7	589.5	636	$4,010 \%$
Little Potato Butte	-51.6	585.9	637.5	$1,135 \%$
Andesite of Potato Butte 1	-386.3	164.5	550.8	235%
Andesite of Potato Butte 2	-289.6	2357.4	2647	$\mathbf{8 1 4 \%}$
Hat Creek Basalt 1	10	2950	2647	$29,500 \%$
Hat Creek Basalt 2	$-\mathbf{8 9 . 3}$	$\mathbf{9 2 . 4}$	181.7	103%

The author admits some of the dates are negative: "The Ar isotopic data, when cast on an inverse isochron diagram, indicate that the first two steps are enriched in 36Ar and thus yield negative ages. These first two steps are most likely influenced by low-temperature alteration of the sample." ${ }^{22}$

5. Isotopic Systematics of Ultramafic Xenoliths

These rocks from North China were dated ${ }^{23}$ in 2007 using the Rubidium/Strontium and Uranium/Lead methods. The rock samples gave ages ${ }^{24}$ between -3 and 9 billion years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 4.5 billion years older than the Earth? The author admits some of the dates are negative: "The Nd model ages for the individual data points are variable, from $\sim 2.8 \mathrm{Ga}$ to negative ages (Table 3), consistent with our earlier observation that REE patterns for all the samples display some degree of secondary metasomatic overprinting by LREE-enriched silicate melts." $\underline{25}$

If we run the isotopic ratios ${ }^{24}$ through Isoplot we get the ages listed in table 6 . There is a $\mathbf{1 2 , 6 9 8}$ million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Table 5

Million Years	
$-3,209$	Million Years
$-1,747$	$\mathbf{9 6 5}$
136	4,803
530	7,935
600	

Table 6

$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$
$\mathbf{5 , 0 4 9}$	$\mathbf{9 , 4 8 9}$
$\mathbf{5 , 0 3 5}$	$\mathbf{1 , 8 2 1}$
$\mathbf{5 , 0 3 4}$	$\mathbf{3 3 8}$
$\mathbf{5 , 0 2 9}$	$\mathbf{9 5}$
$\mathbf{5 , 0 1 2}$	
$\mathbf{5 , 0 0 9}$	
$\mathbf{5 , 0 0 6}$	
$\mathbf{5 , 0 0 4}$	

6. Timing of Precambrian Melt Depletion

These rocks from Wyoming were dated ${ }^{26}$ in 2003 using the Rubidium/Strontium and Neodymium/Samarium method. The rock samples [Tables $7 \& 8$] gave ages ${ }^{27}$ between -2 and 50 billion years old! Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 35 billion years older than the Big Bang explosion? The author admits some of the dates are negative: "That complete equilibrium was not achieved during this interaction is shown by the fact that the garnet-clinopyroxene tie lines for the different radiometric systems in the same sample do not provide ages that agree, and in the case of two of the Williams samples the $\mathrm{Sm}-\mathrm{Nd}$ tie lines provide negative ages (Carlson et al., 1999a)." 28

Table 7

Billion Years	Billion Years
-1.24	6
-1.24	7.46
-0.22	47.37
4.54	49.63

There is a 51,970 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.
Table 8

Billion Years	Billion Years
-2.34	-4.24
-1.75	-1.47
-0.98	-1.14
-0.86	-0.84
4.47	2.51

If we run the Lead 207/206 ratios ${ }^{29}$ through Isoplot we find that the rocks are 5 billion years old.

Table 9

Average	
Maximum	$\mathbf{4 , 9 3 5}$
Minimum	$\mathbf{4 , 4 2 1}$

The author claims that the true age is just 2.6 billion years old: "The mean TMA of these five samples is 2.86 Ga (or 3.07 Ga without the apparently younger sample HK1-24), and given the lower bound mean TRD age of 2.61 Ga , a depletion age in the late Archean seems likely." ${ }^{30}$

7. Re-Os, Sm-Nd, and Rb-Sr Isotope Evidence

These rocks from Uganda were dated ${ }^{31}$ in 1993 using the Rubidium/Strontium and Neodymium/Samarium methods. Since the Earth exists in the present how can rocks have formed in the future? How can a rock be 6 billion years older than the Earth? The author admits some of the dates are negative:
"If Re-Os model ages are calculated using the conventional model age approach, i.e., using the measured Re/Os and osmium isotope composition in comparison to some model for bulk-Earth osmium isotope evolution, several peridotites yield negative ages, or ages that are considerably older than the Earth (Table 5). This indicates that some peridotites cannot have evolved as closed systems."

If we run the Osmium isotope ratios ${ }^{33}$ through Microsoft Excel we get the following results.
Table 10

Million Years	
$-1,584$	Million Years
$-1,504$	-6.46
-478	-1.58
-35	-0.73
-19	2.23

1870s/186Os Ages
The rock samples below gave ages ${ }^{32}$ between -1.5 and 11 billion years old!
Table 11

Sm-Nd	Rb-Sr	\% Ratio
258	5,454	2,114
959	6,245	651
434	12,716	2,930
2,038	1,351	66
1,157	4,026	348

Table 12

$\mathrm{Re} / \mathrm{Os}$	$\mathrm{Sm} / \mathrm{Nd}$	$\mathrm{Rb} / \mathrm{Sr}$
5.5	3.2	8.3
11	3	0.99
6.9	3	
6.6	2.7	
6 Negative	4 Negative	7 Negative

There is a 14,300 million year spread of dates between the youngest [Negative] and the oldest [Positive] ages.

Conclusion

Yuri Amelin states in the journal Elements that radiometric dating is extremely accurate: "However, four 238U/235U-corrected CAI dates reported recently (Amelin et al. 2010; Connelly et al. 2012) show excellent agreement, with a total range for the ages of only 0.2 million years - from $4567.18 \pm 0.50 \mathrm{Ma}$ to 4567.38 ± 0.31 Ma." ${ }^{34-36}$

To come within 0.2 million years out of 4567.18 million years means an accuracy of 99.99562%. Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in radiometric dating is selectively taken to suit and ignores data to the contrary.

References

10 Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

13 The Long Valley Rhyolitic, Geochimica et Cosmochimica Acta, 1998, Volume 62, Number 21/22, Pages 3561-3574

Reference 13, page 3567
15 Reference 13, page 3569
16
http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
The age of 10 to 15 billion years for the age of the Universe.
http://en.wikipedia.org/wiki/Age_of_the_universe
http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
http://en.wikipedia.org/wiki/Age_of the_Earth
http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
http://arxiv.org/pdf/astro-ph/0506458v1.pdf
The age of the Galactic disk, By E. F. del Peloso and L. da Silva
Astronomy \& Astrophysics, Manuscript no. 3307, February 2, 2008

C:\Essays\Geo Dating\Dating\Negative Ages\Negative.xlsm
Ion Microprobe U-Pb Dating, Journal of Volcanology and Geothermal Research, Volume 117, 2002, Pages 285-296
http://www.bgc.org/isoplot_etc/isoplot.html

Reference 8, page 288, 290
Reference 8, page 291

Rn-Generated 206Pb, Mineralogy and Petrology, 1999, Volume 66, Pages 171-191

Reference 16, page 182, 183
Reference 16, page 171
Reference 16, page 176
40Ar/39Ar Age of a Tholeiitic Basalt, Quaternary Research, Volume 68, 2007, Pages 96-110
Reference 20, pages 101, 102
Reference 20, pages 103
Isotopic Systematics of Ultramafic Xenoliths, Chemical Geology, Volume 248, 2008, Pages 40-61
Reference 23, page 46
Reference 23, page 54
Timing of Precambrian Melt Depletion, Lithos, Volume 77, 2004, Pages 453-472
Reference 26, page 458, 460
Reference 26, page 466
Reference 26, page 459
Reference 26, page 463
Re-Os, Sm-Nd, and Rb-Sr Isotope Evidence, Geochemica et Cosmochimica Acta, 1995, Volume 59, Number 5, Pages 959-977

Reference 31, pages 970, 971
Reference 31, pages 963
Dating the Oldest Rocks in the Solar System, Elements, 2013, Volume 9, Pages 39-44
Amelin, Earth and Planetary Science Letters, 2010, Volume 300, Pages 343-350
Connelly, Science, 2012, Volume 338, Pages 651-655

www.creation.com

The Neodymium-Samarium Dating Method

By Paul Nethercott October 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ${ }^{7}$ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically with the Rubidium $/ \mathrm{Strontium}$ ages. $\mathrm{The} \mathrm{U} / \mathrm{Th} / \mathrm{Pb}$ ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang?

If we use isotopic formulas ${ }^{8-11}$ given in standard geology text we can arrive at ages from the Rubidium/Strontium and Neodymium/Samarium ratios. The formula for Rubidium/Strontium age is given as:
$t=\frac{2.303}{\lambda} \log \left(\frac{(87 S r / 86 S r)-(87 S r / 86 S r)_{0}}{(87 R b / 86 S r)}+1\right)$

Where t equals the age in years. \square equals the decay constant. $(87 \mathrm{Sr} / 86 \mathrm{Sr})=$ the current isotopic ratio. $(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=$ the initial isotopic ratio. $(87 \mathrm{Rb} / 86 \mathrm{Sr})=$ the current isotopic ratio. The same is true for the formula below.
$t=\frac{2.303}{\lambda} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(147 S m / 144 N d)}+1\right)$
Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Rocks of the Central Wyoming Province

These rock samples were dated in 2005 by scientists from the University of Wyoming. ${ }^{12}$ If we run the Rubidium/Strontium and Neodymium/Samarium isotope ratios ${ }^{13}$ from the article through Microsoft Excel we get the following values:

1. Ages Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{1 4 7 S m} / \mathbf{1 4 4 N d}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$
Average	$\mathbf{2 , 8 6 3}$	$\mathbf{2 , 8 6 9}$	$\mathbf{5 , 1 2 3}$	$\mathbf{1 7 , 8 9 9}$	$\mathbf{1 1 , 9 0 6}$
Maximum	$\mathbf{2 , 9 5 2}$	$\mathbf{2 , 9 5 4}$	$\mathbf{5 , 2 9 4}$	$\mathbf{3 8 , 7 4 6}$	$\mathbf{1 8 , 9 8 5}$
Minimum	$\mathbf{2 , 6 3 0}$	$\mathbf{2 , 6 3 1}$	$\mathbf{4 , 6 6 2}$	$\mathbf{6 , 6 5 0}$	$\mathbf{7 , 2 9 4}$
Std Deviation	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{1 5 2}$	$\mathbf{9 , 7 5 4}$	$\mathbf{3 , 2 9 8}$

The Uranium/Lead dates ${ }^{14}$ are up to sixteen billion years older than the Rubidium/Strontium and Neodymium/Samarium dates. The Thorium/Lead dates are up to thirty six billion years older. The so called true age is just a guess.

Correlated Nd, Sr And Pb Isotope Variation

According to the article ${ }^{15}$ this specimen [Walvis Ridge, Walvis Bay] was dated in 1982 by scientists from the Massachusetts Institute of Technology, and the Department of Geochemistry, University of Cape Town, South Africa. According to the article ${ }^{16}$ the age of the sample is 70 million years. If we run the various isotope ratios ${ }^{16}$ from the article through Microsoft Excel we get the following values respectively:

2. Age Dating Summary

Summary	Pb207/Pb206	147Sm/144Nd	87Rb/86Sr
Average	5,033	70	64
Maximum	5,061	70	93
Minimum	5,004	69	0
Difference	57	140	93

A Depleted Mantle Source For Kimberlites

According to the article ${ }^{17}$ this specimen [kimberlites from Zaire] was dated in 1984 by scientists from Belgium. According to the article ${ }^{18}$ the age of the samples is 70 million years. If we run the various isotope ratios ${ }^{19}$ from the article through Microsoft Excel we get the following values respectively:
3. Age Dating Summary

Summary	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$\mathbf{8 7 R b} / 86 \mathrm{Sr}$	$147 \mathrm{Sm} / 144 \mathrm{Nd}$
Average	4,977	4,810	86	72
Maximum	5,017	10,870	146	80
Minimum	4,909	1,391	50	63
Difference	108	9,478	196	17

The $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ maximum age is 34 times older than the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ maximum age. The $206 \mathrm{~Pb} / 238 \mathrm{U}$ maximum age is 74 times older than the $147 \mathrm{Sm} / 144 \mathrm{Nd}$ maximum age. There is a 10.8 billion year difference between the oldest and youngest age attained.

Sm-Nd Isotopic Systematics

According to the article ${ }^{20}$ this specimen [Enderby Land, East Antarctic] was dated in 1984 by scientists from the Australian National University, Canberra, and the Bureau of Mineral Resources, Canberra. According to the article ${ }^{20}$ the age of the sample is 3,000 million years. If we run the Rubidium/Strontium isotope ratios ${ }^{21}$ from the article through Microsoft Excel we get the following values respectively:

\section*{4. Rubidium/Strontium Age Dating Summary
 | Average | $\mathbf{- 8 7 3}$ |
| :---: | :---: |
| Maximum | $\mathbf{3 , 4 8 4}$ |
| Minimum | $\mathbf{- 2 5 , 1 2 1}$ |
| Difference | $\mathbf{2 8 , 6 0 5}$ |}

There is almost a 30 billion year difference between the oldest and youngest dates.

Strontium, Neodymium And Lead Compositions

According to the article ${ }^{\overline{22}}$ this specimen [Snake River Plain, Idaho] was dated in 1985 by scientists from the Geology Department, Rice University, Houston, Texas, the Earth Sciences Department, Open University, England and the Geology Department, Ricks College, Idaho. According to the article ${ }^{22}$ the age of the sample is 3.4 billion years. If we run the various isotope ratios ${ }^{23}$ from the article through Microsoft Excel we get the following values respectively:

5. Age Dating Summary

Summary	Pb207/Pb206	Pb207/Pb206	87Rb/86Sr
Average	$\mathbf{5 , 1 4 3}$	$\mathbf{5 , 1 3 8}$	$\mathbf{4 0 , 0 5 2}$
Maximum	$\mathbf{5 , 3 6 2}$	$\mathbf{5 , 3 1 4}$	$\mathbf{2 0 5 , 0 9 3}$
Minimum	$\mathbf{4 , 6 9 8}$	$\mathbf{4 , 9 4 0}$	$\mathbf{1 , 4 4 3}$
Difference	$\mathbf{6 6 4}$	$\mathbf{3 7 4}$	$\mathbf{2 0 3 , 6 5 0}$

The Lead isotope ratios from two different tables give dates 200 billion years younger than the Rubidium/Strontium isotope ratios. The Average age of the Rubidium/Strontium isotope ratios is 40 billion years. Below we can see some of the maximum ages and how stupid they are.
6. $87 \mathrm{Rb} / 86 \mathrm{Sr}$, Maximum Ages

Age	Age
Million Years	Million Years
205,093	11,974
189,521	11,908
188,777	$\mathbf{9 , 9 6 0}$
95,450	$\mathbf{9 , 1 0 1}$
52,643	$\mathbf{7 , 1 2 4}$
13,119	$\mathbf{6 , 0 2 2}$
12,220	5,089

Sr, Nd, and Os Isotope Geochemistry

According to the article ${ }^{24}$ this specimen [Camp Creek area, Arizona] was dated in 1987 by scientists from The University of Tennessee, the University of Michigan, the University of California, Leeds University, and the University of Chicago. According to the article ${ }^{25}$ the age of the samples is 120 million years. If we run the various isotope ratios ${ }^{26}$ from two different tables in the article through Microsoft Excel we get the following values respectively:
7. Rubidium/Strontium and Sm/Nd Age Dating Summary

Summary	$87 \mathrm{Rb} / 86 \mathrm{Sr}$	$\mathbf{8 7 \mathrm { Rb } / 8 6 \mathrm { Sr }}$	$147 \mathrm{Sm} / 144 \mathrm{Nd}$	$147 \mathrm{Sm} / 144 \mathrm{Nd}$
Average	310	103	120	159
Maximum	1,092	207	123	400
Minimum	0	0	120	119
Difference	1,092	207	3	281

The author's choice of 120 million years is just a guess.

Pb, Nd and Sr Isotopic Geochemistry

According to the article ${ }^{27}$ this specimen [Bellsbank kimberlite, South Africa] was dated in 1991 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article ${ }^{67}$ the age of the samples is just 1 million years. If we run the various isotope ratios ${ }^{68}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

8. Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	5,057	5,092	$\mathbf{1 0 , 1 8 2}$	$\mathbf{- 1 , 5 0 2}$
Maximum	$\mathbf{5 , 1 2 0}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{0}$
Minimum	$\mathbf{5 , 0 0 2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{- 3 , 5 9 3}$
Difference	$\mathbf{1 1 8}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{3 , 5 9 3}$

In tables 9 to 12 we can see some of the astounding spread of dates [million of years]. The oldest date is over 17 billion years old. The youngest is less than negative 3.5 billion years. The difference between the two is over 20 billion years. According to the article the true age of the rock is just one million years old!
9. 208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{1 7 , 1 7 1}$	$\mathbf{1 3 , 3 2 2}$	$\mathbf{9 , 7 3 7}$	$\mathbf{7 , 9 6 8}$
$\mathbf{1 5 , 3 4 3}$	13,202	$\mathbf{9 , 7 0 7}$	$\mathbf{7 , 8 3 0}$
$\mathbf{1 5 , 2 9 9}$	13,001	$\mathbf{9 , 0 4 9}$	$\mathbf{7 , 2 5 0}$
15,136	11,119	8,420	$\mathbf{6 , 9 7 2}$
15,054	10,873	8,419	$\mathbf{6 , 6 2 8}$
13,476	10,758	8,368	$\mathbf{6 , 5 7 7}$

10. 206Pb/238U, Maximum Ages

Age	Age	Age
$\mathbf{8 , 5 8 4}$	$\mathbf{6 , 6 5 6}$	$\mathbf{5 , 5 7 6}$
$\mathbf{7 , 9 7 5}$	$\mathbf{6 , 6 5 4}$	$\mathbf{5 , 5 2 0}$
$\mathbf{7 , 3 1 4}$	$\mathbf{6 , 5 1 8}$	$\mathbf{5 , 2 8 5}$
$\mathbf{7 , 1 8 4}$	$\mathbf{6 , 4 4 8}$	$\mathbf{5 , 1 5 9}$
$\mathbf{6 , 8 6 1}$	$\mathbf{5 , 7 5 8}$	$\mathbf{5 , 0 9 9}$

11. Pb 207/206, Maximum Ages

11. Pb 207/206, Maximum Ages			
Age	Age	Age	Age
$\mathbf{5 , 1 2 0}$	$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 4 9}$
$\mathbf{5 , 1 0 9}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 9}$	$\mathbf{5 , 0 4 5}$
$\mathbf{5 , 0 9 7}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 1}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 7 7}$	$\mathbf{5 , 0 6 5}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 2}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 3 3}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 2 2}$

12. $87 \mathrm{Rb} / 86 \mathrm{Sr}$, Minimum Ages

Age	Age	Age	Age
$-3,593$	$-2,981$	$-1,917$	$-1,323$
$-3,231$	$-2,725$	$-1,611$	$-1,245$
$-3,089$	$-2,050$	$-1,499$	$-1,229$
$-3,067$	$-1,926$	$-1,370$	$-1,194$

$\underline{\mathrm{Sr}, \mathrm{Nd}, \text { and } \mathrm{Pb} \text { isotopes }}$

According to the article ${ }^{30}$ this specimen [eastern China] was dated in 1992 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to
the article: "Observed high $\mathrm{Th} / \mathrm{U}, \mathrm{Rb} / \mathrm{Sr}, 87 \mathrm{Sr} / 86 \mathrm{Sr}$ and Delta 208, low $\mathrm{Sm} / \mathrm{Nd}$ ratios, and a large negative Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga , support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component." ${ }^{30}$ If we run the various isotope ratios ${ }^{31}$ from two different tables in the article through Isoplot we get the following values respectively:
13. Age Dating Summary

Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	$\mathbf{1 4 , 1 9 8}$	$\mathbf{7 , 3 6 6}$	$\mathbf{5 , 0 1 4}$
Maximum	$\mathbf{9 4 , 3 9 6}$	$\mathbf{2 2 , 2 0 1}$	$\mathbf{5 , 0 7 7}$
Minimum	$\mathbf{7 9}$	$\mathbf{1 , 1 1 7}$	$\mathbf{4 , 9 4 5}$
Difference	$\mathbf{9 4 , 3 1 7}$	$\mathbf{2 1 , 0 8 3}$	$\mathbf{1 3 1}$

If the true age is 2.9 billion years why so much discordance? In tables 14 and 15 we can see some of the astounding spread of dates [million of years]. The oldest date is over 94 billion years old. The youngest is 79 million years. The difference between the two is over 94 billion years. The oldest date is 1,194 times older than the youngest. According to the article the true age of the rock is 2.9 billion years old!
14. 208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{9 4 , 3 9 6}$	$\mathbf{3 9 , 2 6 7}$	$\mathbf{1 0 , 5 9 5}$	$\mathbf{8 , 1 7 1}$
$\mathbf{9 0 , 6 8 3}$	$\mathbf{2 6 , 2 6 6}$	$\mathbf{1 0 , 2 8 4}$	$\mathbf{7 , 7 8 9}$
$\mathbf{7 4 , 6 3 9}$	$\mathbf{1 8 , 3 3 4}$	$\mathbf{9 , 3 2 8}$	$\mathbf{7 , 6 3 8}$
$\mathbf{5 8 , 1 5 3}$	$\mathbf{1 6 , 3 5 7}$	$\mathbf{8 , 8 2 1}$	$\mathbf{7 , 3 7 5}$
$\mathbf{5 5 , 3 2 4}$	$\mathbf{1 4 , 2 5 0}$	$\mathbf{8 , 7 7 1}$	$\mathbf{7 , 3 1 7}$
$\mathbf{4 5 , 2 4 2}$	$\mathbf{1 1 , 2 1 5}$	$\mathbf{8 , 4 0 3}$	$\mathbf{5 , 7 5 9}$

15. 206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{2 2 , 2 0 1}$	$\mathbf{9 , 8 7 8}$	$\mathbf{7 , 3 4 8}$	$\mathbf{5 , 7 4 6}$
21,813	$\mathbf{9 , 6 5 6}$	$\mathbf{7 , 3 3 5}$	$\mathbf{5 , 7 0 0}$
$\mathbf{1 9 , 3 2 0}$	$\mathbf{9 , 0 5 4}$	$\mathbf{7 , 2 4 9}$	$\mathbf{5 , 2 1 8}$
$\mathbf{1 6 , 6 5 6}$	$\mathbf{8 , 2 4 2}$	$\mathbf{7 , 2 0 2}$	$\mathbf{5 , 2 0 1}$
$\mathbf{1 6 , 2 0 0}$	$\mathbf{8 , 0 4 4}$	$\mathbf{7 , 0 1 9}$	$\mathbf{5 , 1 6 3}$
$\mathbf{1 4 , 7 4 8}$	$\mathbf{7 , 9 9 6}$	$\mathbf{6 , 9 2 3}$	$\mathbf{5 , 1 5 9}$
$\mathbf{1 3 , 6 0 7}$	$\mathbf{7 , 5 9 0}$	$\mathbf{6 , 8 4 8}$	$\mathbf{5 , 0 9 9}$
$\mathbf{1 1 , 2 5 6}$	$\mathbf{7 , 4 2 2}$	$\mathbf{6 , 2 9 2}$	$\mathbf{4 , 8 1 2}$

An Extremely Low U/Pb Source

According to the article ${ }^{32}$ this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The $\mathrm{Pb}-\mathrm{Pb}$ internal isochron obtained for acid leached residues of separated mineral fractions yields an age of $3940 \pm 28 \mathrm{Ma}$, which is similar to the $\mathrm{U}-\mathrm{Pb}(3850 \pm 150 \mathrm{Ma})$ and $\mathrm{Th}-\mathrm{Pb}(3820 \pm 290$ Ma) internal isochron ages. The $\mathrm{Sm}-\mathrm{Nd}$ data for the mineral separates yield an internal isochron age of $3871 \pm 57 \mathrm{Ma}$ and an initial $143 \mathrm{Nd} / \mathrm{I} 44 \mathrm{Nd}$ value of 0.50797 ± 10. The Rb-Sr data yield an internal isochron age of $3840 \pm 32 \mathrm{Ma}$." ${ }^{32}$ If we run the various isotope ratios ${ }^{33}$ from two different tables in the article through Isoplot we get the following values respectively:
16. Rubidium/Strontium Age Dating Summary

Average	$\mathbf{3 , 6 1 9}$
Maximum	$\mathbf{5 , 3 8 5}$
Minimum	$\mathbf{7 2 1}$
Difference	$\mathbf{4 , 6 6 4}$

17. Uranium Age Dating Summary

Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U
Summaries	Age	Age	Age	Age
Average	$\mathbf{4 , 6 7 3}$	$\mathbf{8 , 0 3 5}$	$\mathbf{1 0 , 1 4 8}$	$\mathbf{4 , 5 4 6}$
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 6 , 9 2 3}$	$\mathbf{6 5 , 2 8 6}$	$\mathbf{8 , 1 2 8}$
Minimum	$\mathbf{3 , 9 6 1}$	$\mathbf{1 , 4 7 7}$	$\mathbf{2 , 5 4 2}$	$\mathbf{2 , 7 8 4}$
Difference	$\mathbf{1 , 0 5 7}$	$\mathbf{5 5 , 4 4 5}$	$\mathbf{6 2 , 7 4 4}$	$\mathbf{5 , 3 4 4}$

The article claims that the Rubidium/Strontium age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ${ }^{76}$ so stupid? Or are they right and the Rubidium/Strontium is wrong?
18. 208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{6 5 , 2 8 6}$	$\mathbf{1 4 , 4 3 0}$	$\mathbf{9 , 0 9 4}$	$\mathbf{5 , 4 0 1}$
$\mathbf{3 3 , 8 9 8}$	$\mathbf{1 4 , 4 1 0}$	$\mathbf{6 , 5 2 0}$	$\mathbf{5 , 3 9 6}$
$\mathbf{2 5 , 0 1 3}$	$\mathbf{1 3 , 1 0 7}$	$\mathbf{6 , 1 6 6}$	$\mathbf{5 , 3 6 5}$
$\mathbf{2 2 , 1 7 8}$	$\mathbf{1 2 , 7 3 8}$	$\mathbf{6 , 1 2 1}$	$\mathbf{5 , 0 9 8}$
$\mathbf{2 1 , 2 0 4}$	$\mathbf{1 1 , 6 4 1}$	$\mathbf{5 , 6 7 1}$	$\mathbf{5 , 0 3 5}$
$\mathbf{1 7 , 6 1 1}$	$\mathbf{1 1 , 1 7 4}$	$\mathbf{5 , 4 0 8}$	$\mathbf{4 , 6 7 8}$

19. 206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{5 6 , 9 2 3}$	$\mathbf{1 0 , 8 9 5}$	$\mathbf{6 , 7 6 4}$	$\mathbf{5 , 7 7 7}$
27,313	$\mathbf{1 0 , 2 7 8}$	$\mathbf{6 , 6 7 0}$	$\mathbf{5 , 6 2 5}$
$\mathbf{1 7 , 8 7 3}$	$\mathbf{9 , 6 5 3}$	$\mathbf{6 , 4 4 9}$	$\mathbf{5 , 6 0 2}$
$\mathbf{1 3 , 6 8 0}$	$\mathbf{8 , 0 0 9}$	$\mathbf{6 , 4 3 6}$	$\mathbf{5 , 2 7 8}$
$\mathbf{1 3 , 6 2 3}$	$\mathbf{7 , 3 9 5}$	$\mathbf{6 , 0 7 0}$	$\mathbf{5 , 1 4 7}$

The 72 Ma Geochemical Evolution

According to the article ${ }^{34}$ this specimen [Madeira Archipelago] was dated in 2000 by scientists from Germany. The average Lead date is 705 times older than the average Rubidium date. The true age is claimed to be 430 million years old. ${ }^{34}$ If we run the various isotope ratios ${ }^{35}$ from two different tables in the article through Isoplot we get the following values respectively:
20. Age Dating Summary

Table	207Pb/206Pb	87Rb/86Sr	147Sm/144Nd
Summaries	Age	Age	Age
Average	4,938	7	10
Maximum	5,199	55	164
Minimum	4,898	-4	0
Difference	302	59	164

If the true age is 430 million years than none of the dating methods are even vaguely close. The oldest date is 731 times older than the youngest.

Temporal Evolution of the Lithospheric Mantle

According to the article ${ }^{36}$ this specimen from the Eastern North China Craton was dated in 2009 by scientists from China, USA and Australia. Various tables ${ }^{37}$ in the essay have either calculated dates or ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 32 billion year range.

21. Age Dating Summary					
Table	147Sm/144Nd	176Lu/176Hf	187Re/188Os	87Rb/86Sr	
Summaries	Age	Age	Age	Age	
Average	291	-220	1,048	9	
Maximum	$\mathbf{3 , 0 7 9}$	$\mathbf{4 , 1 9 2}$	20,710	22	
Minimum	$-3,742$	$-9,369$	$-11,060$	0	
Difference	$\mathbf{6 , 8 2 1}$	13,561	31,770	22	

Geochemistry Of The Jurassic Oceanic Crust

According to the article ${ }^{38}$ this specimen from the Canary Islands was dated in 1998 by scientists from Germany. According to the essay: "An Sm-Nd isochron gives an age of $178 \pm 17 \mathrm{Ma}$, which agrees with the age predicted from paleomagnetic data." ${ }^{38}$ The article places the age in the late Cretaceous period. Various tables ${ }^{39}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 350 billion year range! None of the Lead or Rubidium based dating methods even come vaguely close to a Jurassic age.

22. Age Dating Summary		
Dating	87Rb/86Sr	207Pb/206Pb
Summary	Age	Age
Average	$-\mathbf{1 4 9 , 4 8 8}$	$\mathbf{4 , 9 7 4}$
Maximum	51,967	$\mathbf{5 , 0 2 4}$
Minimum	$\mathbf{- 2 9 9 , 3 4 6}$	$\mathbf{4 , 8 4 5}$
Difference	$\mathbf{3 5 1 , 3 1 3}$	$\mathbf{1 7 9}$

Origin Of The Indian Ocean-Type Isotopic Signature

According to the article ${ }^{40}$ this rock formation in the Philippine Sea plate was dated in 1998 by scientists from Department of Geology, Florida International University in Miami. According to the essay the true age is: "Spreading centers in three basins, the West Philippine Basin ($37-60 \mathrm{Ma}$), the Parece Vela Basin (18-31 Ma), and the Shikoku Basin $(17-25 \mathrm{Ma})$ are extinct, and one, the Mariana Trough ($0-6 \mathrm{Ma}$), is active (Figure 1)." ${ }^{40}$ Numerous table and charts affirm this as the true age. ${ }^{41}$ Two tables ${ }^{42}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.
23. Age Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	$206 \mathrm{~Pb} / 238 \mathrm{U}$	208Pb/232Th
Average	42	41	4,960	4,260	8,373
Maximum	55	54	4,989	7,093	13,430
Minimum	19	20	4,921	1,904	3,065
Difference	37	33	68	5,188	10,365

$\mathbf{S r}, \mathbf{N d}$, and Pb isotopes in Proterozoic Intrusives

According to the article ${ }^{\overline{43} \text { this specimen from the Grenville Front in Canadian Labrador was dated in } 1986 \text { by scientists }}$ from Lunar and Planetary Institute, Texas, the United States Geological Survey, and the Geological Survey of Canada. According to the essay: "We report Sr, Nd, and Pb isotopic compositions of mid-Proterozoic anorthosites and related
 Front in Labrador." ${ }^{43}$ The article places the age in the pre Cambrian period. Various tables ${ }^{44}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. If the Uranium/Lead dating method is used to test or calibrate the other methods then they are totally wrong.

24. Age Dating Summary		
Dating	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$
Average	$\mathbf{1 , 4 3 7}$	$\mathbf{5 , 1 3 5}$
Maximum	$\mathbf{1 , 5 0 3}$	$\mathbf{5 , 2 1 8}$
Minimum	$\mathbf{1 , 3 9 5}$	$\mathbf{4 , 9 3 1}$
Difference	$\mathbf{1 0 8}$	$\mathbf{2 8 7}$

Age and Isotopic Relationships

According to the article ${ }^{45}$ this rock formation in Antarctica was dated in 1992 by scientists from California and Germany. According to the essay the true age is: "Nevertheless, concordant $\mathrm{Ph}-\mathrm{Pb}$ model ages of pyroxene separates were obtained (20^{\prime}): $4.55784 \pm 52 \mathrm{Ga}$ for LEW and $4.55780 \pm 42 \mathrm{Ga}$ for ADOR. ${ }^{45}{ }^{45}$ Several tables ${ }^{46}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at disagreement with each other. The two on the far right show how discordant the best dating evolutionist can offer.
25. Age Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	207Pb/206Pb	207Pb/206Pb	147Sm/144Nd	147Sm/144Nd
Average	4,556	4,707	5,007	4,452	902
Maximum	4,610	5,002	5,110	4,497	1,428
Minimum	4,518	4,558	4,960	4,397	536
Difference	92	444	150	101	891

The Beni Bousera Ultramafic Complex of Northern Morocco

According to the article ${ }^{47}$ this rock formation in Morocco was dated in 1995 by scientists from New York. According to the essay the true age is: "The data are presented in Table 5. Garnet-clinopyroxene two-point Sm-Nd isochrons from samples Ga and Ii yield ages of $23.0 \pm 7.3 \mathrm{~m} . \mathrm{y}$. and 20.1 ± 6.9 m.y." ${ }^{48}$ Several tables ${ }^{49}$ in the essay have isotopic ratios which can be calculated. As we can see below the Rhenium/Osmium gives wildly discordant dates.
26. Rhenium/Osmium Age Dating Summary

Average	$\mathbf{- 2 7 2 , 4 5 5}$
Maximum	$\mathbf{- 1 2 4 , 8 8 2}$
Minimum	$-\mathbf{- 3 6 1 , 8 4 2}$
Difference	236,960

Implications for Banda Arc Magma Genesis

According to the article ${ }^{50}$ this rock formation in the Banda Arc, East Indonesia was dated in 1995 by scientists from University of Utrecht, the Royal Holloway University of London, the Free University of Amsterdam and Comell University. According to the essay the true age is: "In summary, the western part of New Guinea is characterised by Phanerozoic rocks ($600-0 \mathrm{Ma}$) in contrast to the northern part of Australia, which is dominated by Proterozoic rocks
(2200-1400 Ma)." ${ }^{51}$ Several tables ${ }^{52}$ in the essay have isotopic ratios which can be calculated. As we can see below the Lead 207/206 dating method gives wildly discordant dates. How can both methods be so at variance with each other?
27. Lead 207/206 Age Dating Summary

Average	$\mathbf{4 , 9 7 1}$
Maximum	$\mathbf{4 , 9 9 1}$
Minimum	$\mathbf{4 , 9 3 3}$
Difference	$\mathbf{5 7}$

Pb, Sr, and Nd Isotopic Features

According to the article ${ }^{53}$ this rock formation in China was dated in 2001 by scientists from China. According to the essay the true age is: "They define a $\mathrm{Rb}-\mathrm{Sr}$ isochron age of $286 \mathrm{Ma} . \mathrm{Pb}$ isotopic compositions for bitumen and crude oil from Karamay, Liaohe, and Tarim all show features of crust-mantle mixing." ${ }^{53}$ The Neodymium/Samarium dating method gives the following dates: "Thus, the Nd isotopic compositions strongly show an influence from depleted mantle (286 Ma)." ${ }^{54} \mathrm{~A}$ Neodymium/Samarium Isochron gives more dating information " $143 \mathrm{Nd} / 144 \mathrm{Nd}$ and $147 \mathrm{Sm} / 144 \mathrm{Nd}$ ratios vary within 0.51157 to 0.51197 and 0.0778 to 0.153 , respectively, and yield old, depleted mantle Nd model ages of 1.5 to $3.2 \mathrm{Ga} .{ }^{" 55}$ Several tables ${ }^{56}$ in the essay [tables one to six] have isotopic ratios which can be calculated. As we can see below the Lead 207/206 dating method gives wildly discordant dates. How can both methods be so at variance with each other?
28. Lead 207/206 Age Dating Summary

Table 1	207Pb/206Pb	87Rb/86Sr
Dating Summary	Age	Age
Average	5,009	$\mathbf{3 , 7 5 8}$
Maximum	5,029	$\mathbf{2 4 , 6 6 1}$
Minimum	$\mathbf{4 , 9 8 2}$	$\mathbf{1 8 2}$
Difference	$\mathbf{4 7}$	$\mathbf{2 4 , 4 7 9}$

29. Lead 207/206 Age Dating Summary

Table 2	207Pb/206Pb	87Rb/86Sr
Dating Summary	Age	Age
Average	4,995	$\mathbf{6 4 6}$
Maximum	$\mathbf{5 , 0 9 7}$	$\mathbf{7 0 2}$
Minimum	4,845	565
Difference	$\mathbf{2 5 2}$	$\mathbf{1 3 8}$

30. Lead 207/206 Age Dating Summary

207Pb/206Pb	Table 3	Table 4	Table 5	Table 6
Dating Summary	Age	Age	Age	Age
Average	$\mathbf{4 , 1 5 1}$	5,060	5,027	5,079
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 , 0 6 3}$	$\mathbf{5 , 0 6 6}$	$\mathbf{6 , 4 7 1}$
Minimum	$\mathbf{1 , 7 7 6}$	5,053	$\mathbf{4 , 9 8 7}$	$\mathbf{4 , 9 7 8}$
Difference	$\mathbf{3 , 2 4 2}$	$\mathbf{9}$	$\mathbf{7 9}$	$\mathbf{1 , 4 9 3}$

Sources of Labrador Sea Sediments

According to the article ${ }^{57}$ this rock formation in Labrador was dated in 2002 by scientists from Canada. According to the essay the true age is 8,600 years old: "The newly acquired Pb isotopic data allow us to better constrain the different source areas that supplied clay-size material during the last deglaciation, until 8.6 kyr (calendar ages)." ${ }^{57} \mathrm{~A}$ table ${ }^{58}$ in the essay has Carbon-14 dates alongside isotopic ratios which can be calculated. As we can see below the Lead 207/206 dating method gives wildly discordant dates. How can both methods be so at variance with each other?
30. Lead 207/206 Versus Carbon-14 Age Dating Summary

Dating	Carbon 14 Age	Calibrated Age	207Pb/206Pb	Carbon 14 Age	Calibrated Age
Summary	Years	Years	Million Years	Dating Ratio	Dating Ratio
Average	11,656	$\mathbf{1 3 , 1 1 4}$	4,967	456,448	408,945
Maximum	22,190	$\mathbf{2 6 , 0 6 4}$	$\mathbf{4 , 9 8 2}$	$\mathbf{6 3 6 , 9 6 1}$	$\mathbf{5 8 4 , 9 3 8}$
Minimum	7,792	$\mathbf{8 , 4 8 5}$	$\mathbf{4 , 9 4 4}$	$\mathbf{2 2 3 , 7 2 2}$	$\mathbf{1 9 0 , 4 6 9}$
Difference	$\mathbf{1 4 , 3 9 8}$	$\mathbf{1 7 , 5 7 9}$	$\mathbf{3 8}$	413,239	$\mathbf{3 9 4 , 4 6 9}$

The Petrogenesis of Martian Meteorites

According to the article ${ }^{59}$ these two meteorite samples was dated in 2002 by scientists from the University of New Mexico, the Johnson Space Center, Texas and the Lockheed Engineering and Science Company, Texas. According to the essay the true age based on Neodymium/Samarium dating is 173 and 166 million years old. ${ }^{59} \mathrm{~A}$ table ${ }^{60}$ in the essay has Rubidium/Strontium isotopic ratios which can be calculated. As we can see below Rubidium/Strontium dating method gives wildly discordant dates. The Table 1 summary is the rock that is supposed to be 173 million year old. The Table 2 summary is the rock that is supposed to be 166 million year old. How can both methods be so at variance with each other?
31. Rubidium/Strontium Age Dating Summary

Dating	87Rb/86Sr	87Rb/86Sr
Summary	Table 1	Table 2
Average	579	240
Maximum	$\mathbf{3 , 2 3 3}$	697
Minimum	$\mathbf{1 7 0}$	74
Difference	$\mathbf{3 , 0 6 3}$	$\mathbf{6 2 4}$

Conclusion

Brent Dalrymple states in his anti creationist book The Age of the Earth: "Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{61}$

Looking at some of the dating it is obvious that precision is much lacking. He then goes on: "Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{62}$

I his book he gives a table ${ }^{63}$ with radiometric dates of twenty meteorites. If you run the figures through Microsoft Excel, you will find that they are 98.7% in agreement. There is only a seven percent difference between the ratio of the smallest and oldest dates. As we have seen in this essay, such a perfect fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html The age of 10 to 15 billion years for the age of the Universe.

2 http://en.wikipedia.org/wiki/Age of the universe
$3 \quad$ http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik

http://en.wikipedia.org/wiki/Age_of the_Earth
http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
http://www.bgc.org/isoplot_etc/isoplot.html
Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73
[Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].
Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990.
Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].
Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].

Rocks of the Central Wyoming Province, Canadian Journal Of Earth Science, 2006, Volume 43, Pages 1419

Reference 27, Page 1436-1437
Reference 27, Page 1439
Correlated N D, Sr And Pb Isotope Variation, Earth and Planetary Science Letters, Volume 59, 1982, Pages 327
Reference 45, Pages 330, 331
A Depleted Mantle Source For Kimberlites, Earth and Planetary Science Letters, Volume 73, 1985, Pages 269

Reference 47, Pages 270
Reference 47, Pages 271, 273
Sm-Nd Isotopic Systematics, Earth and Planetary Science Letters, Volume 71, 1984, Pages 46
Reference 50, Pages 49
Strontium, Neodymium And Lead Compositions, Earth and Planetary Science Letters,
Volume 75, 1985, Pages 354-368
Reference 52, Pages 356, 363
Sr, Nd, and Os isotope geochemistry, Earth and Planetary Science Letters, Volume 99, 1990, Pages 362
Reference 63, Pages 364
Reference 63, Pages 365, 368
Pb, Nd and Sr isotopic geochemistry, Earth and Planetary Science Letters, Volume 105, 1991, Pages 149

Reference 66, Pages 154, 160
Reference 66, Pages 156, 157
Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113, 1992, Pages 107
Reference 68, Pages 110
An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702

Reference 75, Pages 4690, 4691
The 72 Ma Geochemical Evolution, Earth and Planetary Science Letters, Volume 183, 2000, Pages 73
Reference 77, Pages 76-79
Temporal Evolution of the Lithospheric Mantle, Journal Of Petrology, 2009, Volume 50, Number 10, Pages 1857

Reference 108, Pages 1873, 1874, 1877, 1879, 1880
Geochemistry of Jurassic Oceanic Crust, Journal Of Petrology, 1998, Volume 39, Number 5, Pages 859-880

Reference 115, Pages 867, 868
Origin of the Indian Ocean-type isotopic signature, Journal Of Geophysical Research, 1998, Volume 103, Number B9, Pages 20,963

Reference 134, Pages 20965, 20969
Reference 134, Pages 20968, 20969
Sr, Nd, and Pb isotopes in Proterozoic Intrusives, Geochimica et Cosmochimica Acta, 1986, Volume 50, Pages 2571-2585

Reference 43, Pages 2575, 2577
Age and Isotopic Relationships, Geochimica et Cosmochimica Acta, 1992, Volume 56, Pages 1673-1694
Reference 43, Pages 1676, 1678, 1684, 1686, 1687

The Beni Bousera Ultramafic Complex of Northern Morocco, Geochimica et Cosmochimica Acta, 1996, Volume 60, Number 8, Pages 1429

Reference 47, Pages 1434
Reference 47, Pages 1442
Implications for Banda Arc Magma Genesis, Geochimica et Cosmochimica Acta, 1995, Volume 59, Number 12, Pages 2573-2598

Reference 50, Pages 2588
Reference 50, Pages 2580-2581
Pb, Sr, and Nd Isotopic Features, Geochimica et Cosmochimica Acta, 2001, Volume 65, Number 15,

Pages 2555-2570
54 Reference 53, Pages 2559
55 Reference 53, Pages 2560
56 Reference 53, Pages 2558, 2561-2566
57 Sources of Labrador Sea Sediments, Geochimica et Cosmochimica Acta, 2002, Volume 66, Number 14, Pages 2569

58 Reference 57, Pages 2572-2573
59 The Petrogenesis of Martian Meteorites, Geochimica et Cosmochimica Acta, 2002, Volume 66, Number 11, Pages 2037-2053

60 Reference 59, Pages 2040-2041
61 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

Reference 61, Page 23
Reference 61, Page 287

www.creation.com

Rocks Older Than The Galaxy

By Paul Nethercott
May 2012
How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

Age Of Uranium Mineralization

These rocks were dated ${ }^{\mathbf{8}}$ in from the Gas Hills in Wyoming were dated in 1979 using the Uranium-Lead method. The rock sample GH-B1 was dated giving ages ${ }^{9}$ between $-1,240$ and 12,000 million years old!

Table 1

Table 3	Table 4	Table 5
Million Years	Million Years	Million Years
11,780	7,232	5,060
-190	4,654	4,830
-200	4,355	-34
-220	3,540	-160
-310	-290	-240
-340	-340	-260
-420	-550	-500
-530		-610
-530		-650
$-1,240$		

"These systematics are similar to those observed by Ludwig for the Shirley Basin uranium ores, for which preferential loss of radioactive daughters in the U decay chain was shown to be the dominant cause of apparentage discordance." ${ }^{10}$
"The trends of apparent age and discordance of the total ore, uraninite-coffinite, and pyrite analyses for the Gas Hills and Crooks Gap ores are very similar to those reported for the Shirley Basin uranium ores." 11

Another group of rock samples were dated ${ }^{\mathbf{1 2}}$ giving absurd values. Many had negative ages! Some were older than the Solar System. How can Earth rocks be older than the Solar System?

Rocks Older Than The Galaxy

Table 2

Million Years	Million Years
7,323	-340
4,830	-500
5,060	-550
-240	-610
-290	-650

Table 3

Sample	Maximum Age	Minimum Age	Difference	Difference
Name	Million Years	Million Years	Million Years	Percentage
CG-A4	$\mathbf{7 , 3 2 3}$	$\mathbf{- 3 4 0}$	$\mathbf{7 , 6 6 3}$	$\mathbf{- 2 , 2 5 3 \%}$
CG-A5	$\mathbf{4 , 6 5 4}$	$\mathbf{- 5 5 0}$	$\mathbf{5 , 2 0 4}$	$\mathbf{- 9 4 6 \%}$
CG-A1	$\mathbf{4 , 3 5 5}$	$\mathbf{- 2 9 0}$	$\mathbf{4 , 6 4 5}$	$\mathbf{- 1 , 6 0 1 \%}$

A rock sample number GH-A6 was dated ${ }^{13}$ as being between 5,870 million and negative 650 million years old. Looking at positive dates above zero and ignoring negative ages what do we find? The oldest is 5,870 million years old and the youngest ${ }^{13}$ is 8 million years old. One is 733 times older than the other. Using a table ${ }^{14}$ in the essay which has the ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ and ${ }^{207} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ we can easily work out the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios in the sample.

Table 4

Sample	207Pb/206Pb	207Pb/206Pb
Number	Ratio	Million Years
GH-B3	0.462	4,123
GH-B3	0.480	4,181
GH-B6	0.316	3,549
GH-D2407	0.332	3,628
GH-D2407	0.413	3,958
GH-D2407	0.407	3,936
CG-A6	0.351	3,712
CG-A6	0.363	3,763

If we run the ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ratios through Isoplot ${ }^{15}$ sample is over 3,500 million years old. The dates are not put beside the ratios in the original essay. The author states in the opening paragraph of his essay that the rock formation is only "inclusion of all samples increases the observed range to 12 to 41 million years." ${ }^{16}$ In the first paragraph he admits that the isotopic composition has been contaminated over time producing anomalous dates. His choice of this narrow range is purely guesswork. Looking at all the dates it is just random whichever you pick.

African Peridotite Xenoliths

These kimberlites of southern Africa were dated in 1989 using Rhenium-Osmium dating method. ${ }^{17}$ Some of the ages ${ }^{18}$ are older than the Solar System and galaxy.

Table 5

5.6	Billion Years Old
12.6	Billion Years Old

If we insert the Osmium ratios listed in article ${ }^{19}$ into Microsoft Excel use the dating formula listed in Gunter Faure's book ${ }^{20}$ we get the dates listed in table 6.
$t=\frac{1.04-\left({ }^{187} O s \div{ }^{186} O s\right)}{0.050768} \times 10^{9}$

Table 6

Average	
Maximum	$\mathbf{2 8 9 6 5 9}$
Minimum	$\mathbf{- 3 , 3 0 9}$

Osmium/Osmium dating
"TMA varies from 0.11 to 5.7 Ga with three samples having Re/Os that is too high to explain their measured 187Os/186Os." ${ }^{21}$

The Siberian Craton

Xenoliths from kimberlites intruding ${ }^{22}$ the Siberian craton were dated in 1995 using the Re-Os, $\mathrm{Sm}-\mathrm{Nd}$, and RbSr dating methods. The results in Table 5 were acquired using Rubidium-Strontium ${ }^{23}$ isotope dating as being between 5 and 13 billion years old. The dates in Table 6 were obtained using Rhenium-Osmium ${ }^{24}$ dating method.
"If $\mathrm{Re} / \mathrm{Os}$ model ages are calculated using the conventional model age approach, i.e., using the measured $\mathrm{Re} / \mathrm{OS}$ and osmium isotope composition in comparison to some model for bulk-Earth osmium isotope evolution, several peridotites yield negative ages, or ages that are considerably older than the Earth" ${ }^{25}$

Table 7

5.45	Billion Years Old
6.24	Billion Years Old
12.71	Billion Years Old

Table 8

5.5	Billion Years Old
11.0	Billion Years Old
6.9	Billion Years Old
6.6	Billion Years Old

Table 9

Average	$-144,339$
Maximum	2,777
Minimum	$-\mathbf{1 , 5 8 4 , 8 5 7}$

Osmium/Osmium Ratio Dating

History Of The Acapulco Meteorite

This well known meteorite was dated in 1997 by scientists ${ }^{26}$ from France and Germany. According to the dates in Table 7 given ${ }^{27}$ below, the meteorite is older than the galaxy. Even if we take into account the given uncertainty levels listed is the essay, ${ }^{26}$ the rocks could still be 8.6 billion years old.

Rocks Older Than The Galaxy

Table 10		
Maximum Age	$\mathbf{1 1 , 4 2 1}$	Million Years
Minimum Age	$\mathbf{3 , 4 8 1}$	Million Years
Average Age	$\mathbf{4 , 9 6 4}$	Million Years
Age Difference	$\mathbf{7 , 9 4 0}$	Million Years
Difference	$\mathbf{3 2 8 \%}$	Percent
Standard Deviation	$\mathbf{1 , 7 2 3}$	Million Years

Potassium/Argon Dating of Iron Meteorites

The Weekeroo Station iron meteorite was dated ${ }^{28}$ in 1967 using the Potassium-Argon dating method. The author of the article begins with the following remarks:
"The formation or solidification ages of iron meteorites have never been well determined. The most direct method seems to be that of Stoenner and Zahringer, who measured the potassium and argon contents by neutron-activation analysis. Their data, however, indicated ages of from about 7 to 10 billion years, whereas the age of the solar system is generally well accepted at about 4.7 billion years. Fisher later confirmed these data, but concluded that they were evidence of an unexplained potassium: argon anomaly rather than that they indicated true ages. From Muller and Zahringer's more recent data they conclude that a Potassium/Argon age of about 6.3 billion years can be assigned to many iron meteorites." ${ }^{29}$

The author of the article then concludes with the following remarks:
"The ages found by us are typical of the great ages found for most iron meteorites. From these, in conjunction with the Strontium/Rubidium data of Wasserburg on silicate inclusions in this meteorite, we conclude that the Potassium: Argon dating technique as applied to iron meteorites gives unreliable results. One may derive ad hoc possible explanations of the discord between the silicate and iron-phase ages, such as shock emplacement of these inclusions within the metal matrix without disturbing the potassium: argon ratios in the metal, but we feel that such mechanisms are unlikely." ${ }^{30}$

The essay lists a number of dates in the opening paragraph. The last four in table below are taken from Table 1 in the original essay.

Table 11

Meteorite Sample	Billion Years
Stoenner and Zahringer	10.0
Stoenner and Zahringer	7.0
Muller and Zahringer's	6.3
Wasserburg, Burnett	4.7
K-1	8.5
K-2	9.3
B-1	$\mathbf{6 . 5}$
G-1	10.4

Stabilisation of Archaean Lithosphere
The Rhenium-Osmium isotope method was used ${ }^{31}$ to date these rocks in 1995. The data ${ }^{32}$ in the table below give absurd ages:

Rocks Older Than The Galaxy

Table 12

Sample Name	Billion Years
PHN-2600	8.5
F-865	10.2
PHN-2825	15.6
PHN-5239	11.1

The author tries to explain such dating errors: "For example, several of the peridotite Re/Os model ages calculated using measured $187 \mathrm{Re} / 188 \mathrm{Os}$ (TM, in Table 2) either give geologically unreasonable ages or do not intersect the Bulk Earth evolution line at all. Walker reasoned that the highly refractory compositions of Kaapvaal peridotites could have led to complete removal of Re during formation."

Pb Isotopic age of the Allende Chondrules

Professor Yuri Amelin from The Australian National University did the research in 2007. ${ }^{34}$ More than ten dates are older than the age of the Solar System. One is as old as the Galaxy. ${ }^{35}$

Table 13

Million Years	Million Years
10,066	5,396
6,945	5,345
5,956	5,336
5,604	5,180
5,526	5,147
5,462	4,950

If we run some of the isotopic ratios listed in the online supplement ${ }^{36}$ through Isoplot we get the following dates:

Table 14

$238 \mathrm{U} / 206 \mathrm{~Pb}$	$207 \mathrm{~Pb} / 235 \mathrm{U}$	$208 \mathrm{~Pb} / 232 \mathrm{Th}$
10,066	5,731	5,947
6,945	5,202	5,920
5,956	4,956	5,860
5,604	4,864	5,735
5,526	4,832	5,636
5,462	4,826	5,335
5,396	4,807	5,265

Rhenium-187/Osmium-187 In Iron Meteorites

The ${ }^{187}$ Rhenium $/{ }^{187}$ Osmium method and Potassium-Argon method were used to date these meteorite ${ }^{37}$ fragments in 1997. Four of the dates were older than the Solar System and two were older than the Galaxy. ${ }^{38}$

Rocks Older Than The Galaxy

Table 15

Canyon Diablo Meteorite	Billion Years
Leach Acetone	5.73
Leach H,O	$\mathbf{8 . 3 1}$
Troilite dissolved	10.43
Metal 1	13.7

Ar-39/Ar-40 Dating of Mesosiderites

Donald Bogard from the Johnson Space Center in Houston, Texas performed this dating ${ }^{36}$ in 1990 using the Argon dating method. The table below is a summary from the appendix ${ }^{37}$ in the original essay. Three dates are as old or older than the Galaxy. Eleven are older than the Solar System.

Table 16

Meteorite	Maximum Age	Minimum Age	Age Difference
Name	Billion Years	Billion Years	Billion Years
1. Bondoc	4.02	3.20	0.82
2. Emery	9.08	3.31	5.77
3. Estherville	13.96	3.18	10.78
4. Hainholz	5.48	1.55	3.93
5. Lowicz	9.93	2.92	7.01
6. Morristown	7.92	3.60	4.32
7. Mount Padbury	5.52	3.49	2.03
8. Patwar Basalt	6.14	1.80	4.34
9. Patwar Gabbro	8.43	2.67	5.76
10. QUE-86900	10.92	3.24	7.68
11. Simondium	9.17	3.27	5.90
12. Veramin	13.13	2.71	10.42

40Ar-39Ar Chronology

Ekaterina V. Korochantseva from Heidelberg, Germany did this dating in 2009. ${ }^{41}$ Below is a mathematical summary of the appendix ${ }^{42}$ given in the original magazine article.

Rocks Older Than The Galaxy

Table 17

Sample Name	Maximum Age	Minimum Age	Average Age	Age Difference
Table A01. Dhofar 019 whole rock	11,679	737	2,883	10,942
Table A02. Dhofar 019 maskelynite	10,521	818	2,674	9,703
Table A03. Dhofar 019 pyroxene	10,730	804	3,694	9,926
Table A04. Dhofar 019 olivine	10,487	1,778	4,549	8,709
Table A05. Dhofar 019 opaque	14,917	4,420	8,453	10,497
Table A06. SaU 005 whole rock	7,184	568	1,653	6,616
Table A07. SaU 005 glass	6,235	3,247	4,242	2,988
Table A08. SaU 005 maskelynite	7,432	1,344	3,899	6,088
Table A10. SaU 005 olivine	13,979	3,839	6,559	10,140
Table A11. Shergotty whole rock	8,542	1,112	2,995	7,430
Table A15. Zagami whole rock	6,064	94	2,276	5,970
Table A16. Zagami maskelynite	5,733	238	1,202	5,495
Table A18. Zagami opaque	7,707	290	1,525	7,417
Table A9. SaU 005 pyroxene	12,845	1,354	4,763	11,491

(Ages in million so years)
In Table 14 we can see below that 44 dates are older than the age of the Solar System and nine are over ten billion years.

Table 18

Sample Name	Million Years	Sample Name	Million Years
Table A05. Dhofar 019	$\mathbf{1 4 , 9 1 7}$	Table A02. Dhofar 019	$\mathbf{7 , 2 3 3}$
Table A09. SaU 005	$\mathbf{1 3 , 9 7 9}$	Table A06. SaU 005	$\mathbf{7 , 1 8 4}$
Table A18. Zagami	$\mathbf{1 2 , 8 4 5}$	Table A02. Dhofar 019	$\mathbf{7 , 1 6 8}$
Table A01. Dhofar 019	$\mathbf{1 1 , 6 7 9}$	Table A03. Dhofar 019	$\mathbf{6 , 8 5 7}$
Table A03. Dhofar 019	$\mathbf{1 0 , 7 3 0}$	Table A09. SaU 005	$\mathbf{6 , 6 8 0}$
Table A02. Dhofar 019	$\mathbf{1 0 , 5 2 1}$	Table A05. Dhofar 019	$\mathbf{6 , 4 8 2}$
Table A04. Dhofar 019	$\mathbf{1 0 , 4 8 7}$	Table A04. Dhofar 019	$\mathbf{6 , 4 5 1}$
Table A02. Dhofar 019	$\mathbf{1 0 , 3 2 2}$	Table A07. SaU 005	$\mathbf{6 , 2 3 5}$
Table A03. Dhofar 019	$\mathbf{1 0 , 1 4 2}$	Table A07. SaU 005	$\mathbf{6 , 1 9 2}$
Table A05. Dhofar 019	$\mathbf{9 , 6 6 9}$	Table A14. Shergotty	$\mathbf{6 , 0 6 4}$
Table A05. Dhofar 019	$\mathbf{9 , 6 1 3}$	Table A09. SaU 005	$\mathbf{5 , 8 7 4}$
Table A01. Dhofar 019	$\mathbf{9 , 2 6 0}$	Table A04. Dhofar 019	$\mathbf{5 , 7 7 1}$
Table A05. Dhofar 019	$\mathbf{9 , 1 4 8}$	Table A07. SaU 005	$\mathbf{5 , 7 4 5}$
Table A04. Dhofar 019	$\mathbf{9 , 1 1 1}$	Table A15. Zagami	$\mathbf{5 , 7 3 3}$
Table A10. SaU 005	$\mathbf{8 , 5 4 2}$	Table A03. Dhofar 019	$\mathbf{5 , 6 9 3}$
Table A01. Dhofar 019	$\mathbf{8 , 5 0 7}$	Table A08. SaU 005	$\mathbf{5 , 6 0 8}$
Table A09. SaU 005	$\mathbf{8 , 3 2 3}$	Table A07. SaU 005	$\mathbf{5 , 5 9 8}$
Table A03. Dhofar 019	$\mathbf{8 , 1 9 7}$	Table A08. SaU 005	$\mathbf{5 , 5 7 5}$
Table A05. Dhofar 019	$\mathbf{7 , 9 8 7}$	Table A07. SaU 005	$\mathbf{5 , 4 1 4}$
Table A17. Zagami	$\mathbf{7 , 7 0 7}$	Table A18. Zagami	$\mathbf{5 , 4 0 3}$
Table A04. Dhofar 019	$\mathbf{7 , 6 1 0}$	Table A05. Dhofar 019	$\mathbf{5 , 3 9 1}$
Table A08. SaU 005	$\mathbf{7 , 4 3 2}$	Table A07. SaU 005	$\mathbf{5 , 3 8 9}$

Rocks Older Than The Galaxy

The author explains the radically absurd ages as contamination: "The temperature extractions above $1380^{\circ} \mathrm{C}$ display apparent ages exceeding the age of the solar system that is indicative of the presence of excess argon." ${ }^{43}$

Shocked Meteorites: Argon-40/Argon-39

Joachim Kunz ${ }^{44}$ from the Max Plank Institute in Heidelberg, Germany did this dating in 2009 using the Argon-40/Argon-39 dating method. If we look at the appendix ${ }^{45}$ at the end of his article we find many dates older than the Solar Stem and Galaxy.

Table 19

Sample Name	Million Years
F. Yanzhuang. Host rock	$\mathbf{5 , 5 9 8}$
G. Yanzhuang. Melt fragment	$\mathbf{1 0 , 2 1 7}$
	5,423
	5,503
H. Yanzhuang. Melt vein	$\mathbf{7 , 0 1 6}$
J. Bluff. Host rock	$\mathbf{1 3 , 3 4 8}$
	$\mathbf{1 0 , 9 3 8}$
	$\mathbf{6 , 2 7 2}$
N. Ness County. Host rock \#1	$\mathbf{5 , 0 5 2}$
O. Ness County. Host rock \#2	$\mathbf{6 , 6 6 8}$
	$\mathbf{5 , 5 7 6}$
Q. Paranaiba. Host rock \#2	$\mathbf{5 , 5 9 3}$
V. Beeler. Host rock \#1	$\mathbf{6 , 4 6 6}$
W. Beeler. Host rock \#2	$\mathbf{6 , 6 0 9}$

Potassium-Argon Age Of Iron Meteorites

This dating ${ }^{46}$ was done in 1958. Even dating done fifty years later is giving dates just as absurd. The opening paragraph of the article states:
"Under the usual assumptions accepted for this method, ages have been calculated and found to be close to 10 billion years, which is about twice the reported age of stone meteorites, and also higher than the supposed age of the universe." ${ }^{47}$ The data in Table 16 below was taken from the data in ${ }^{48}$ the original essay.

Table 20

Meteorite	Age
K-Ar Dating	Billion Years
Mt. Ayliff	6.9
Arispe	6.8
H. H. Ninninger	6.9
Carbo	8.4
Canon Diablo I	8.5
Canon Diablo I	6.9
Canon Diablo I	6.6
Canon Diablo I	5.3
Canon Diablo II	13
Canon Diablo II	11
Canon Diablo II	10.5
Canon Diablo II	12
Toluca I	5.9
Toluca I	7.1
Toluca II	10
Toluca II	10.8
Toluca II	8.8

The Allende and Orgueil Chondrites

This dating was done in 1976 by scientists ${ }^{49}$ from the United States Geological Survey, Denver, Colorado. The data in Table 17 below was taken from $\mathrm{Pb}-206 / \mathrm{U}-238$ and $\mathrm{Pb}-208 / \mathrm{Th}-232$ dating ${ }^{50}$ summary in the original essay. Thirty one of the dates below are older than the age of the Solar System. Four are over ten billion years. One date is older than the Big Bang explosion date.

Table 21

Pb-206/U-238	
Billion Years	Billion Years
9.86	16.49
8.95	14.4
8.82	11.7
7.82	10.40
7.80	10.40
7.75	10.1
6.66	9.86
6.50	9.55
6.50	9.15
6.44	7.52
6.42	6.99
6.35	6.40
6.33	5.44
6.05	5.35
5.73	5.15
5.73	4.81

Ultra-high Excess Argon in Kyanites

These rocks from Japan were dated in 2005 using ${ }^{51}$ the Argon 40 isotope method. The opening paragraph of this article states:
"A laser fusion Ar-Ar technique applied on single crystals of kyanite from river sands of the Kitakami Mountain region of northeast Japan yielded ages of up to 16 Ga , more than three times the age of the earth. Although the age values are geologically meaningless, the ultra-high excess argon in kyanites is unique and hitherto unreported. We interpret this to be an artifact of ultra-high argon pressure derived from radiogenic argon in potassium-rich phases such as phengites during the Barrovian type retrogression of the ultra-high pressure rocks in this region." 52
"In this study, we report the results from fusion Ar-Ar technique on single crystals of kyanite recovered from river sands in the Kitakami region. However, the kyanites yielded ages that are two to three times older than the age of the earth." ${ }^{52}$

Table 22

Sample	Billion Years
Ky6	7.7
Ky7	11.1
Ky8	15.1
Ky9	9.9
Ky11	16.3
Ky13	11.1

Conclusion

Prominent evolutionist Brent Dalrymple states: "Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{53}$

Looking at some of the dating it is obvious that precision is much lacking. He then goes on: "Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{54}$

The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
The age of 10 to 15 billion years for the age of the Universe.
http://en.wikipedia.org/wiki/Age_of_the_universe
$3 \quad$ http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
4 http://en.wikipedia.org/wiki/Age_of the_Earth
$5 \quad$ http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
6 The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382

Rocks Older Than The Galaxy

7 http://arxiv.org/pdf/astro-ph/0506458v1.pdf
The age of the Galactic disk, By E. F. del Peloso and L. da Silva
Astronomy \& Astrophysics, Manuscript no. 3307, February 2, 2008
8 Kenneth R. Ludwig, Age Of Uranium Mineralization, Economic Geology, 1979, Volume 74, Pages 1654-1668
C:\Essays\Geo Dating\Age Earth\Ages 017.pdf

28 L. Rancitelli, Potassium: Argon Dating of Iron Meteorites, Science, 1967, Volume 155, Pages 999-1000
C:\Essays\Geo Dating\Age Earth\Meteor Rancitelli.pdf
Reference 28, Page 999
Reference 28, Page 1000

Rocks Older Than The Galaxy

31 D. G. Pearson, Stabilisation of Archaean lithosphere, Earth and Planetary Science Letters, 1995, Volume 134, Pages 341-357
C:\Essays\Geo Dating\Age Earth\Pearson.pdf

49 Mitsunobu Tatsumoto, The Allende and Orgueil Chondrites, Geochemica Et Cosmochemica Acta, 1976, Volume 40, pages 617-634
C::Essays\Geo Dating\Age Earth\Meteorite Tatsumoto.pdf
50
51 T. Itaya, Ultra-high Excess Argon in Kyanites, Gondwana Research, 2005, Volume 8, Number 4, Pages 617-621
C:\Essays\Geo Dating\Age Earth\Itaya.pdf

Reference 51, Page 617
53 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

www.creation.com

Rocks Older Than The Solar System

Rocks Older Than The Solar System
Examining The Thorium Lead Dating Method

By Paul Nethercott
August 2013

Introduction

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

1. Uranium-Thorium-Lead Isotope Data

These rocks from the Marble Bar area of the Pilbara Craton, Western Australia, were dated ${ }^{8}$ in 2011 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 3.4 billion years old. ${ }^{8}$ If we put the ratios from a table ${ }^{9}$ in the article into Microsoft Excel and run the values through Isoplot ${ }^{10}$ we get ages between 5 and 100 billion years old! How can a rock be 85 billion years older than the Big Bang explosion? Of all the samples, 45 are older than the Earth, 23 are older than the Galaxy and 17 are older than the Universe. There is a 75 billion year spread of dates between the youngest and the oldest ages.

Table 1

Statistics	$\mathbf{2 0 7 ~ P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$
Average	$\mathbf{5 , 3 2 5}$	$\mathbf{5 6 , 9 7 6}$	$\mathbf{7 , 3 1 9}$	$\mathbf{1 5 , 1 9 2}$
Maximum	$\mathbf{5 , 4 0 3}$	$\mathbf{1 0 0 , 6 0 1}$	$\mathbf{1 0 , 0 5 4}$	$\mathbf{3 1 , 0 0 5}$
Minimum	$\mathbf{5 , 2 2 2}$	$\mathbf{2 4 , 9 8 0}$	$\mathbf{5 , 7 9 5}$	$\mathbf{7 , 1 3 8}$
Difference	$\mathbf{1 8 1}$	$\mathbf{7 5 , 6 2 2}$	$\mathbf{4 , 2 5 9}$	$\mathbf{2 3 , 8 6 8}$

Table 2

$208 P b / 232 \mathrm{Th}$	$\mathbf{2 0 7 P b / 2 3 5 U}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$
$\mathbf{1 0 0 , 6 0 1}$	$\mathbf{1 0 , 0 5 4}$	$\mathbf{3 1 , 0 0 5}$
$\mathbf{8 4 , 4 5 7}$	$\mathbf{8 , 2 3 0}$	$\mathbf{2 0 , 3 4 3}$
$\mathbf{7 3 , 9 6 8}$	$\mathbf{8 , 1 4 3}$	$\mathbf{1 9 , 5 8 4}$
$\mathbf{6 7 , 4 2 3}$	$\mathbf{7 , 7 6 3}$	$\mathbf{1 7 , 3 0 6}$
58,353	$\mathbf{7 , 6 5 8}$	$\mathbf{1 7 , 0 8 8}$
$\mathbf{5 7 , 1 1 6}$	$\mathbf{7 , 0 2 7}$	$\mathbf{1 3 , 4 1 0}$
$\mathbf{5 5 , 3 1 1}$	$\mathbf{6 , 9 7 7}$	$\mathbf{1 3 , 0 2 2}$
$\mathbf{5 1 , 6 0 7}$	$\mathbf{6 , 6 8 2}$	$\mathbf{1 1 , 4 7 9}$
$\mathbf{4 4 , 4 3 9}$	$\mathbf{6 , 6 6 1}$	$\mathbf{1 1 , 3 5 3}$
$\mathbf{3 9 , 0 9 0}$	$\mathbf{6 , 5 2 1}$	$\mathbf{1 0 , 6 5 2}$
$\mathbf{2 6 , 3 6 1}$	$\mathbf{6 , 3 1 3}$	$\mathbf{9 , 9 2 6}$
$\mathbf{2 4 , 9 8 0}$	$\mathbf{5 , 7 9 5}$	$\mathbf{7 , 1 3 8}$

2. Uranium, Thorium and Lead Geochronology

These rocks from the Kola Peninsula in Russia were dated ${ }^{11}$ in 2011 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 350 million years old. ${ }^{11}$ If we put the ratios from a table ${ }^{12}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 269

Rocks Older Than The Solar System

and 5,140 million years old! There is an 1,100 percent difference between some dates. That percentage difference equals almost 5,000 million years!

Table 3

Statistics	207Pb Age/232Th Age	238U Age/232Th Age	238U/206Pb Age	207Pb/206Pb Age
Average	$\mathbf{8 5 9 \%}$	$\mathbf{2 5 5 \%}$	$\mathbf{1 , 0 5 4}$	$\mathbf{3 , 3 8 1}$
Maximum	$\mathbf{1 2 7 5 \%}$	$\mathbf{1 1 6 5 \%}$	$\mathbf{5 , 1 4 0}$	$\mathbf{4 , 7 4 1}$
Minimum	$\mathbf{3 6 1 \%}$	$\mathbf{7 4 \%}$	$\mathbf{2 6 9}$	$\mathbf{1 , 3 1 8}$
Difference	$\mathbf{9 1 4 \%}$	$\mathbf{1 0 9 2 \%}$	$\mathbf{4 , 8 7 1}$	$\mathbf{3 , 4 2 3}$

3. The Uranium, Thorium and Lead Compositions

These rocks from the Morocco and France were dated ${ }^{13}$ in 2007 using the Uranium/Lead and Thorium/Lead dating methods. If we put the ratios from a table ${ }^{14}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 2 and 92 billion years old! How can a rock be 75 billion years older than the Big Bang explosion? Of all the samples, 53 are older than the Earth, 13 are older than the Galaxy and 6 are older than the Universe. There is a 90 billion year spread of dates between the youngest and the oldest ages.

Table 4

Statistics	$\mathbf{2 0 7 P b} / \mathbf{3 0 6 P b}$	$\mathbf{2 0 8 P b} / \mathbf{2 3 2 T h}$	$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$
Average	$\mathbf{4 , 9 5 5}$	$\mathbf{1 5 , 6 0 9}$	$\mathbf{4 , 8 7 3}$
Maximum	$\mathbf{5 , 0 9 0}$	$\mathbf{9 2 , 4 9 4}$	$\mathbf{1 8 , 6 3 9}$
Minimum	$\mathbf{4 , 8 7 1}$	$\mathbf{1 , 9 3 9}$	$\mathbf{1 , 4 3 7}$
Difference	$\mathbf{2 1 9}$	$\mathbf{9 0 , 5 5 6}$	$\mathbf{1 7 , 2 0 2}$

4. Rubidium/Strontium and Uranium/Lead Systematics

These rocks from the Kola Peninsula in Russia were dated ${ }^{15}$ in 2011 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is $2075-2100$ million years old. ${ }^{15}$ If we put the ratios from a table ${ }^{16}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 2 and 10 billion years old! Of all the samples, 45 are older than the Earth, 23 are older than the Galaxy and 17 are older than the Universe. There is a 75 billion year spread of dates between the youngest and the oldest ages.

Table 5

Statistics	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\underline{\mathbf{8 7 S r} / \mathbf{8 6 S r}}$
Average	$\mathbf{5 , 0 2 0}$	$\mathbf{7 , 2 5 3}$	$\mathbf{8 , 1 7 7}$	$\mathbf{2 , 1 8 5}$
Maximum	$\mathbf{5 , 1 0 2}$	$\mathbf{1 0 , 5 3 9}$	$\mathbf{1 0 , 2 8 3}$	$\mathbf{3 , 4 3 6}$
Minimum	$\mathbf{4 , 8 3 4}$	$\mathbf{2 , 8 1 4}$	$\mathbf{5 , 3 0 3}$	$\mathbf{1 , 7 3 9}$
Difference	$\mathbf{2 6 7}$	$\mathbf{7 , 7 2 5}$	$\mathbf{4 , 9 8 0}$	$\mathbf{1 , 6 9 7}$

5. $\mathbf{C u}-\mathbf{P b}-\mathbf{Z n}-A g$ Mineralisation

These rocks from the Democratic Republic of Congo were dated ${ }^{17}$ in 2009 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 520 million years old. ${ }^{18}$ If we put the ratios from a table ${ }^{19}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 0.1 and 200 billion years old! How can a rock be 185 billion years older than the Big Bang explosion? Of all the samples, 96 are older than the Earth, 42 are older than the Galaxy and 35 are older than the Universe. There is a 198 billion year spread of dates between the youngest and the oldest ages.

Rocks Older Than The Solar System

Table 6

Statistics	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$	$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$
Average	$\mathbf{5 2 , 3 2 1}$	$\mathbf{4 , 8 5 6}$	$\mathbf{1 1 , 8 8 4}$	$\mathbf{5 , 7 7 5}$
Maximum	$\mathbf{1 9 9 , 3 1 9}$	$\mathbf{6 , 2 7 5}$	$\mathbf{4 8 , 4 9 6}$	$\mathbf{1 2 , 1 5 0}$
Minimum	$\mathbf{8 8 2}$	$\mathbf{3 , 0 5 6}$	$\mathbf{1 7 4}$	$\mathbf{8 4 8}$
Difference	$\mathbf{1 9 8 , 4 3 7}$	$\mathbf{3 , 2 1 9}$	$\mathbf{4 8 , 3 2 2}$	$\mathbf{1 1 , 3 0 2}$

6. Uranium-Lead Age Of Baddeleyite

This meteorite was dated ${ }^{20}$ in 2011 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 4.1 billion years old. ${ }^{21}$ If we put the ratios from a table ${ }^{22}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 0.1 and 165 billion years old! How can a rock be 150 billion years older than the Big Bang explosion? Of all the samples 11 are older than the Universe. There is a 125 billion year spread of dates between the youngest and the oldest ages.

Table 7

Statistics	Pb 207/206	207Pb/235U	206Pb/238U	207Pb/235U	Pb206/U238	Pb208/232Th
Average	$\mathbf{4 , 0 4 2}$	$\mathbf{2 , 2 0 9}$	$\mathbf{1 , 0 4 7}$	$\mathbf{8 3 3}$	$\mathbf{2 2 2}$	$\mathbf{1 0 1 , 2 3 1}$
Maximum	$\mathbf{5 , 1 1 2}$	$\mathbf{4 , 5 1 7}$	$\mathbf{3 , 3 0 6}$	$\mathbf{2 , 5 1 5}$	$\mathbf{2 9 7}$	$\mathbf{1 6 5 , 4 6 9}$
Minimum	$\mathbf{2 , 6 8 9}$	$\mathbf{6 8 1}$	$\mathbf{2 3 8}$	$\mathbf{1 6 1}$	$\mathbf{1 8 3}$	$\mathbf{4 0 , 2 9 7}$
Difference	$\mathbf{2 , 4 2 3}$	$\mathbf{3 , 8 3 6}$	$\mathbf{3 , 0 6 8}$	$\mathbf{2 , 3 5 3}$	$\mathbf{1 1 4}$	$\mathbf{1 2 5 , 1 7 2}$

Table 8

Pb208/232Th	Pb208/232Th
165,469	102,437
150,399	$\mathbf{8 2 , 8 9 8}$
143,322	74,124
137,057	47,131
127,166	43,247

7. Mesozoic Lithosphere Destruction

These rocks from the North China Craton were dated ${ }^{23}$ in 2001 using the Uranium/Lead and Thorium/Lead dating methods. The article claims ${ }^{24}$ that the true age is 125 million years old. If we put the ratios from a table ${ }^{25}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 5 and 44 billion years old! How can a rock be 30 billion years older than the Big Bang explosion? Of all the samples, 40 are older than the Earth, 15 are older than the Galaxy and 12 are older than the Universe. There is a 40 billion year spread of dates between the youngest and the oldest ages.

Table 9

Statistics	Pb 207/206	$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$	$\mathbf{2 0 7 P b} / \mathbf{2 3 5 U}$	Pb208/232Th
Average	$\mathbf{5 , 0 5 6}$	$\mathbf{7 , 4 3 1}$	$\mathbf{3 5 , 6 8 3}$	$\mathbf{1 1 , 3 0 3}$
Maximum	$\mathbf{5 , 0 9 8}$	$\mathbf{1 4 , 2 8 2}$	$\mathbf{4 4 , 6 8 3}$	$\mathbf{2 7 , 2 0 8}$
Minimum	$\mathbf{5 , 0 4 7}$	$\mathbf{5 , 8 7 1}$	$\mathbf{3 3 , 5 2 4}$	$\mathbf{8 , 2 5 8}$
Difference	$\mathbf{5 1}$	$\mathbf{8 , 4 1 1}$	$\mathbf{1 1 , 1 5 9}$	$\mathbf{1 8 , 9 5 0}$

If we use isotopic formulas ${ }^{26-29}$ given in standard geology text we can arrive at ages from the $\mathrm{Rb} / \mathrm{Sr}$ and $\mathrm{Nd} / \mathrm{Sm}$ ratios listed in the article. The formula for $\mathrm{Rb} / \mathrm{Sr}$ age is given as:
$t=\frac{2.303}{\lambda} \log \left(\frac{(87 S r / 86 S r)-(87 S r / 86 S r)_{0}}{(87 R b / 86 S r)}+1\right)$

Rocks Older Than The Solar System

Where t equals the age in years. λ equals the decay constant. $(87 \mathrm{Sr} / 86 \mathrm{Sr})=$ the current isotopic ratio. $(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=$ the initial isotopic ratio. $(87 \mathrm{Rb} / 86 \mathrm{Sr})=$ the current isotopic ratio. The same is true for the formula below.

$$
\begin{equation*}
t=\frac{2.303}{\lambda} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(147 S m / 144 N d)}+1\right) \tag{2}
\end{equation*}
$$

If we put the ratios from this table ${ }^{30}$ in the article into Microsoft Excel and use these formulas we get ages between 116 and 125 million years old! The Uranium/Lead ratios give ages between 5 billion and 44 billion years old!

Table 10

Method/Sample	FC1-1	FC1-2	FC5-1	FC6-1	FC6-2	FC7	FC4
$\mathrm{Pb} 207 / 206$	5,047	5,047	5,051	5,051	5,049	5,051	5,098
$206 \mathrm{~Pb} / 238 \mathrm{U}$	6,050	6,658	5,871	6,407	6,539	6,212	14,282
$207 \mathrm{~Pb} / 235 \mathrm{U}$	33,767	34,765	33,524	34,380	34,588	34,071	44,683
$\mathrm{~Pb} 208 / 232$ Th	8,402	8,396	8,725	8,774	9,358	8,258	27,208
$\mathrm{Rb} / \mathrm{Sr}$	124	126	124	126	126	124	116
$\mathrm{Nd} / \mathrm{Sm}$	125	126	126	125	125	125	116

8. SHRIMP Uranium/Lead Geochronology

These rocks from Western Australia were dated ${ }^{31}$ in 2001 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 3 billion years old. ${ }^{31}$ If we put the ratios from a table ${ }^{32}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 2 million and 24 billion years old! How can a rock be 10 billion years older than the Big Bang explosion? Of all the samples, 18 are older than the Earth, 3 are older than the Galaxy and 2 are older than the Universe. There is a 24 billion year spread of dates between the youngest and the oldest ages.

Table 11

Statistics	208Pb/232Th	207Pb/206Pb	206Pb/238U	207Pb/235U
Average	$\mathbf{5 , 0 7 5}$	$\mathbf{3 , 0 2 7}$	$\mathbf{1 , 3 0 3}$	$\mathbf{1 , 2 9 4}$
Maximum	$\mathbf{2 4 , 3 4 4}$	$\mathbf{6 , 4 9 5}$	$\mathbf{2 , 9 4 1}$	$\mathbf{2 , 9 4 0}$
Minimum	$\mathbf{8}$	$\mathbf{8 6 9}$	$\mathbf{5}$	$\mathbf{2}$
Difference	$\mathbf{2 4 , 3 3 6}$	$\mathbf{5 , 6 2 7}$	$\mathbf{2 , 9 3 5}$	$\mathbf{2 , 9 3 8}$

Table 12

Statistics	$\mathbf{2 0 8 P b} / \mathbf{2 3 2 T h}$	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$	$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$	$\mathbf{2 0 7 P b} / \mathbf{2 3 5 U}$
Average	$\mathbf{1 , 9 8 9}$	$\mathbf{2 , 6 8 8}$	$\mathbf{2 , 7 9 3}$	$\mathbf{2 , 7 2 9}$
Maximum	$\mathbf{2 3 , 3 5 5}$	$\mathbf{2 , 6 8 8}$	$\mathbf{2 , 7 9 3}$	$\mathbf{2 , 7 2 9}$
Minimum	$\mathbf{5 6}$	$\mathbf{2 , 6 5 1}$	$\mathbf{2 , 5 5 8}$	$\mathbf{2 , 6 1 8}$
Difference	$\mathbf{2 3 , 3 0 0}$	$\mathbf{3 7}$	$\mathbf{2 3 6}$	$\mathbf{1 1 1}$

Table 13

Statistics	$\mathbf{2 0 8 P b} / \mathbf{2 3 2 T h}$	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$	$\mathbf{2 0 7 P b} / \mathbf{2 3 5 U}$
Average	$\mathbf{1 , 8 3 4}$	$\mathbf{2 , 7 1 6}$	$\mathbf{2 , 0 9 8}$
Maximum	$\mathbf{1 1 , 9 6 4}$	$\mathbf{3 , 3 4 7}$	$\mathbf{3 , 3 5 1}$
Minimum	$\mathbf{0 . 1}$	$\mathbf{2 , 4 9 0}$	$\mathbf{5 9}$
Difference	$\mathbf{1 1 , 9 6 4}$	$\mathbf{8 5 7}$	$\mathbf{3 , 2 9 1}$

Rocks Older Than The Solar System

9. The Beverley Uranium Deposit

These rocks from the North Flinders Ranges, South Australia., were dated ${ }^{33}$ in 2010 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 400 million years old. ${ }^{34}$ If we put the ratios from a table ${ }^{35}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 1 million and 20 billion years old! How can a rock be 5 billion years older than the Big Bang explosion? Of all the samples, 6 are older than the Earth, 3 are older than the Galaxy and 2 are older than the Universe. There is a 20 billion year spread of dates between the youngest and the oldest ages. In table 15 we can see the percentage difference between the Thorium dates and the other three dating ratios used. The difference is almost 600,000 percent!

Table 14

Statistical	Age	Age	Age	Age
Summary	207/206	206Pb/238U	207Pb/235U	208Pb/232Th
Average	737	3	3	$\mathbf{3 , 7 5 8}$
Maximum	$\mathbf{2 , 4 2 9}$	7	7	$\mathbf{2 0 , 5 8 3}$
Minimum	$\mathbf{9}$	$\mathbf{0 . 1 9 3 4}$	$\mathbf{1}$	$\mathbf{5 2}$
Difference	$\mathbf{2 , 4 2 0}$	7	$\mathbf{6}$	$\mathbf{2 0 , 5 3 1}$

Table 15

Statistical	Ratio	Ratio	Ratio
Summary	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / \mathbf{2 3 5 U}$
Average	$\mathbf{2 5 , 8 4 1 \%}$	$\mathbf{9 5 , 1 0 7 \%}$	$\mathbf{9 1 , 0 7 3 \%}$
Maximum	$\mathbf{1 3 7 , 2 2 0 \%}$	$\mathbf{5 8 0 , 6 9 3 \%}$	$\mathbf{5 7 1 , 7 5 0 \%}$
Minimum	$\mathbf{6 5 4 \%}$	$\mathbf{1 , 2 6 0 \%}$	$\mathbf{8 0 0 \%}$
Difference	$\mathbf{1 3 6 , 5 6 5 \%}$	$\mathbf{5 7 9 , 4 3 3 \%}$	$\mathbf{5 7 0 , 9 5 0 \%}$

10. Isotopic Systematics of the Goalpara Ureilite

This meteorite was dated ${ }^{36}$ in 1994 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 4.55 billion years old. ${ }^{36}$ If we put the ratios from a table ${ }^{9}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 5 and 173 billion years old! How can a rock be 160 billion years older than the Big Bang explosion? Of all the samples, 123 are older than the Earth, 77 are older than the Galaxy and 71 are older than the Universe. There is a 168 billion year spread of dates between the youngest and the oldest ages.

Table 16

Statistics	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$208 \mathrm{~Pb} / 232 \mathrm{Th}$
Average	$\mathbf{5 , 0 5 6}$	$\mathbf{2 7 , 4 0 6}$	$\mathbf{8 7 , 8 2 5}$
Maximum	$\mathbf{5 , 2 7 9}$	$\mathbf{5 1 , 6 1 2}$	$\mathbf{1 7 3 , 6 3 3}$
Minimum	$\mathbf{4 , 9 7 9}$	$\mathbf{4 , 9 2 9}$	$\mathbf{1 7 , 6 5 8}$
Difference	$\mathbf{3 0 0}$	$\mathbf{4 6 , 6 8 3}$	$\mathbf{1 5 5 , 9 7 6}$

11. Middle Atlas Peridotite Xenoliths

These rocks from Morooco were dated ${ }^{38}$ in 2009 using the Uranium/Lead and Thorium/Lead dating methods. If we put the ratios from a table ${ }^{39}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 3 and 14 billion years old! How can a rock be as old as the Big Bang explosion? Of all the samples, 3 are older than the Earth, 1 are older than the Galaxy and 1 are older than the Universe. There is a 6 billion year spread of dates between the youngest and the oldest ages.

Rocks Older Than The Solar System

Table 17

Statistics	$208 \mathrm{~Pb} / 232 \mathrm{Th}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$
Average	$\mathbf{9 , 4 9 3}$	$\mathbf{4 , 9 3 9}$	$\mathbf{5 , 0 5 6}$
Maximum	$\mathbf{1 4 , 5 5 7}$	$\mathbf{4 , 9 9 6}$	$\mathbf{6 , 4 1 9}$
Minimum	$\mathbf{4 , 4 2 9}$	$\mathbf{4 , 8 8 2}$	$\mathbf{3 , 6 9 3}$
Difference	$\mathbf{1 0 , 1 2 7}$	$\mathbf{1 1 4}$	$\mathbf{2 , 7 2 7}$

12. A Precise 232Th/208Pb Chronology

These rocks from Inner Mongolia were dated ${ }^{40}$ in 1993 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 555 million years old. ${ }^{40}$ If we put the ratios from a table ${ }^{41}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 400 million and 55 billion years old! How can a rock be 40 billion years older than the Big Bang explosion? Of all the samples, 170 are older than the Earth, 34 are older than the Galaxy and 19 are older than the Universe. There is a 75 billion year spread of dates between the youngest and the oldest ages.

Table 18

Statistics	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	208Pb/232Th	$206 \mathrm{~Pb} / 238 \mathrm{U}$
Average	5,068	$\mathbf{7 6 4}$	$\mathbf{9 , 3 2 1}$
Maximum	8,077	5,699	54,790
Minimum	$\mathbf{3 , 5 8 6}$	402	$\mathbf{4}$
Difference	4,491	5,297	54,787

13. Age of the MET 78008 Ureilite

This meteorite was dated ${ }^{42}$ in 1994 using the Uranium/Lead and Thorium/Lead dating methods. The article claims that the true age is 4.56 billion years old. ${ }^{42}$ If we put the ratios from a table ${ }^{43}$ in the article into Microsoft Excel and run the values through Isoplot we get ages between 5 and 90 billion years old! How can a rock be 65 billion years older than the Big Bang explosion? Of all the samples, 63 are older than the Earth, 32 are older than the Galaxy and 29 are older than the Universe. There is a 75 billion year spread of dates between the youngest and the oldest ages.

Table 19

Statistics	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$208 \mathrm{~Pb} / 232 \mathrm{Th}$
Average	5,077	15,565	47,442
Maximum	5,327	30,179	90,595
Minimum	4,963	7,496	14,271
Difference	364	22,683	76,324

Table 20

Statistics	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$
Average	$\mathbf{1 1 , 5 2 0}$	$\mathbf{4 , 4 9 5}$
Maximum	25,513	4,576
Minimum	4,283	$\mathbf{4 , 4 1 1}$
Difference	21,229	$\mathbf{1 6 6}$

Rocks Older Than The Solar System

Conclusion

Yuri Amelin states in the journal Elements that radiometric dating is extremely accurate: "However, four 238U/235U-corrected CAI dates reported recently (Amelin et al. 2010; Connelly et al. 2012) show excellent agreement, with a total range for the ages of only 0.2 million years - from $4567.18 \pm 0.50 \mathrm{Ma}$ to 4567.38 ± 0.31 Ма." 44-46

To come within 0.2 million years out of 4567.18 million years means an accuracy of 99.99562%. Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in radiometric dating is selectively taken to suit and ignores data to the contrary.

References

14

16

11 U-Th-Pb Geochronology, Gondwana Research, 2012, Volume 21, Pages 728-744
12 Reference 11, page 735
13 The U, Th and Pb Compositions, Geochimica et Cosmochimica Acta, 2009, Volume 73, Pages 469-488

15 Rb-Sr and U-Pb Systematics, Lithology and Mineral Resources, 2011, Volume 46, Number 2, Pages 151-164
http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html The age of 10 to 15 billion years for the age of the Universe.
http://en.wikipedia.org/wiki/Age_of the_universe
http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
http://en.wikipedia.org/wiki/Age of the_Earth
http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
http://arxiv.org/pdf/astro-ph/0506458v1.pdf
The age of the Galactic disk, By E. F. del Peloso and L. da Silva
Astronomy \& Astrophysics, Manuscript no. 3307, February 2, 2008
C:\Essays\Geo_Dating\Dating\Th-232_Pb-208\Th-Pb.xlsm
U-Th-Pb Isotope Data, Earth and Planetary Science Letters, 2012, Volume 319-320, Pages 197-206

Reference 8, page 199
http://www.bgc.org/isoplot_etc/isoplot.html

Reference 13, page 475, 476

Reference 15, page 156, 158

Rocks Older Than The Solar System

$\mathbf{C u}-\mathbf{P b}-\mathbf{Z n}-A g$ Mineralisation, Mineral Deposita, 2010, Volume 45, Pages 393-410
Reference 17, page 393, 394
Reference 17, page 397, 398

Uranium-Lead Age Of Baddeleyite, Journal Of Geophysical Research, 2011, Volume 116, Page 1-12

Reference 20, page 7
Reference 20, page 6
Mesozoic Lithosphere Destruction, Contributions Mineral Petrology, 2002, Volume 144, Pages 241-253

Reference 23, page 243
Reference 23, page 246
Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73 [Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].

Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990. Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].

Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].

Reference 23, page 245
SHRIMP U-Pb Geochronology, International Earth Science, 2002, Volume 91, Pages 406-432
Reference 31, pages 414, 416, 423
The Beverley Uranium Deposit, Economic Geology, 2011, Volume 106, Pages 835-867
Reference 33, pages 846
Reference 33, pages 866
Isotopic Systematics of the Goalpara Ureilite, Gcochimica et Cosmochimtca Acta, 1995, Volume 59, Number 2, Pages 381-390

Reference 36, page 384
Middle Atlas Peridotite Xenoliths, Geochimica et Cosmochimica Acta, 2010, Volume 74, Pages 1417-1435

Reference 38, page 1425
A Precise 232Th-208Pb Chronology, Geochimica et Cosmochimica Acta, 1994, Volume 58, Number 15, Pages 3155-3169

Reference 40, page 3160-3163

Rocks Older Than The Solar System

Age of the MET 78008 Ureilite, Geochimica et Cosmochimica Acta, 1995, Volume 59, Number 11, Pages 2319-2329

Reference 42, page 2324
Dating the Oldest Rocks in the Solar System, Elements, 2013, Volume 9, Pages 39-44
Amelin, Earth and Planetary Science Letters, 2010, Volume 300, Pages 343-350
Connelly, Science, 2012, Volume 338, Pages 651-655

www.creation.com

Rocks Older Than The Earth
 By Paul Nethercott
 May 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

Broken Hill, New South Wales

These rocks were dated ${ }^{8}$ in 1981 using the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating method. According to the dates obtained, many of the rocks are older than the Earth and Solar System. Some of the rocks are as old as the galaxy itself. The author of the article comments:
"It has been argued already that the high initial ages in the release patterns of both hornblende and plagioclase can be translated into a concentration of excess 40Ar. Concentrations for those samples analysed by the 40Ar / 39 Ar spectrum method are given in Table 5, and can be used to estimate the partition coefficient of Ar between hornblende and plagioclase." ${ }^{9}$
"Excess 40 Ar was incorporated into minerals during the 520-Ma event at a temperature of about $350^{\circ} \mathrm{C}$." ${ }^{10}$
There is no way of proving this assumption. It is just an excuse for such ridiculous ages of geological system that supposedly formed between 1,600 and 500 million years ago. ${ }^{11}$ The data in tables 1 to 6 shows ages ${ }^{\mathbf{1 2}}$ greater than the age of the Solar System.

Table 1

Temperature	Age	Age
40Ar/39Ar	Million Years	Category
Plagioclase		
$\mathbf{7 0 0}$	$\mathbf{7 , 4 7 3}$	Older Than Solar System
$\mathbf{6 5 0}$	$\mathbf{5 , 7 5 3}$	Older Than Solar System
$\mathbf{B 8 0}$	$\mathbf{6 , 1 8 5}$	Older Than Solar System
$\mathbf{1 2 3 0}$	$\mathbf{5 , 2 4 4}$	Older Than Solar System
$\mathbf{1 2 5 0}$	$\mathbf{5 , 1 9 1}$	Older Than Solar System
FUSE	$\mathbf{5 , 7 2 1}$	Older Than Solar System
Hornblende		
$\mathbf{4 7 0}$	$\mathbf{5 , 0 5 0}$	Older Than Solar System
$\mathbf{5 3 0}$	$\mathbf{4 , 8 0 2}$	Older Than Earth

Ages from 4,802 to 7,473 million years old.

Rocks Older Than The Earth

Table 2

Temperature	Age	Age
40Ar/39Ar	Million Years	Category
Plagioclase		
TF	$\mathbf{5 , 1 7 0}$	Older Than Solar System
$\mathbf{3 5 0}$	$\mathbf{6 , 9 3 1}$	Older Than Solar System
$\mathbf{4 3 0}$	$\mathbf{7 , 0 1 5}$	Older Than Solar System
$\mathbf{4 9 0}$	$\mathbf{6 , 6 1 1}$	Older Than Solar System
$\mathbf{5 4 0}$	$\mathbf{6 , 1 6 7}$	Older Than Solar System
$\mathbf{5 9 0}$	$\mathbf{5 , 0 5 0}$	Older Than Solar System
$\mathbf{1 0 6 0}$	$\mathbf{4 , 6 3 7}$	Older Than Earth
$\mathbf{1 0 8 0}$	$\mathbf{4 , 9 2 9}$	Older Than Earth
$\mathbf{1 1 0 0}$	$\mathbf{5 , 1 7 1}$	Older Than Solar System
$\mathbf{1 2 0 0}$	$\mathbf{6 , 0 3 7}$	Older Than Solar System
FUSE	$\mathbf{7 , 0 1 0}$	Older Than Solar System

Ages from 4,637 to 7,015 million years old.
Table 3

Temperature	Age	Age
$40 \mathrm{Ar} / 39 \mathrm{Ar}$	Million Years	Category
Clinopyroxene		
$\mathbf{1 0 4 0}$	$\mathbf{4 , 7 0 4}$	Older Than Earth
$\mathbf{1 0 9 0}$	$\mathbf{4 , 9 7 0}$	Older Than Earth
$\mathbf{1 0 7 0}$	$\mathbf{4 , 9 8 9}$	Older Than Earth
$\mathbf{1 1 2 0}$	$\mathbf{4 , 7 6 7}$	Older Than Earth
FUSE	$\mathbf{5 , 3 7 3}$	Older Than Solar System

Ages from 4,704 to 5,373 million years old.

Table 4

Temperature	Age	Age
40Ar/39Ar	Million Years	Category
Plagioclase		
TF	$\mathbf{6 , 7 3 0}$	Older Than Solar System
$\mathbf{3 5 0}$	$\mathbf{7 , 3 1 7}$	Older Than Solar System
$\mathbf{4 4 0}$	$\mathbf{5 , 0 5 5}$	Older Than Solar System
$\mathbf{5 2 0}$	$\mathbf{4 , 8 6 1}$	Older Than Earth
$\mathbf{5 8 0}$	$\mathbf{5 , 0 7 5}$	Older Than Solar System
$\mathbf{6 5 0}$	$\mathbf{4 , 9 7 3}$	Older Than Earth
$\mathbf{9 3 0}$	$\mathbf{5 , 4 0 9}$	Older Than Solar System
$\mathbf{9 7 0}$	$\mathbf{6 , 7 9 5}$	Older Than Solar System
$\mathbf{1 0 0 0}$	$\mathbf{7 , 5 8 7}$	Older Than Solar System
$\mathbf{1 0 3 0}$	$\mathbf{6 , 9 6 0}$	Older Than Solar System
$\mathbf{1 0 6 0}$	$\mathbf{6 , 7 9 9}$	Older Than Solar System
$\mathbf{1 0 7 0}$	$\mathbf{6 , 5 1 1}$	Older Than Solar System
$\mathbf{1 0 9 0}$	$\mathbf{7 , 2 5 7}$	Older Than Solar System
$\mathbf{1 1 4 0}$	$\mathbf{7 , 8 2 3}$	Older Than Solar System
$\mathbf{1 1 7 0}$	$\mathbf{7 , 6 6 6}$	Older Than Solar System
$\mathbf{1 3 0 0}$	$\mathbf{9 , 5 8 8}$	Older Than Solar System
$\mathbf{1 3 8 0}$	$\mathbf{8 , 4 3 2}$	Older Than Solar System
FUSE	$\mathbf{7 , 2 3 4}$	Older Than Solar System

Ages from 4,861 to 9,588 million years old.

Rocks Older Than The Earth

Table 5

Temperature	Age	Age
$\mathbf{4 0 A r} / 39 \mathrm{Ar}$	Million Years	Category
Plagioclase		
$\mathbf{7 1 0}$	$\mathbf{7 , 6 5 3}$	Older Than Solar System
$\mathbf{7 7 0}$	$\mathbf{6 , 4 8 4}$	Older Than Solar System
$\mathbf{8 0 0}$	$\mathbf{7 , 3 6 7}$	Older Than Solar System
$\mathbf{8 2 0}$	$\mathbf{6 , 7 0 9}$	Older Than Solar System
Hornblende		
$\mathbf{5 5 0}$	$\mathbf{5 , 0 6 8}$	Older Than Solar System
$\mathbf{6 2 0}$	$\mathbf{4 , 7 7 7}$	Older Than Earth

Ages from 4,777 to 7,653 million years old.
Table 6

Temperature	Age	Age
$40 \mathrm{Ar} / 39 \mathrm{Ar}$	Million Years	Category
Plagioclase		
$\mathbf{3 6 0}$	$\mathbf{5 , 7 4 8}$	Older Than Solar System
$\mathbf{5 5 0}$	$\mathbf{5 , 4 5 9}$	Older Than Solar System
$\mathbf{8 4 0}$	$\mathbf{5 , 9 9 8}$	Older Than Solar System
Hornblende		
$\mathbf{9 6 0}$	$\mathbf{9 , 6 8 1}$	Older Than Solar System
$\mathbf{9 6 0}$	$\mathbf{9 , 5 8 2}$	Older Than Solar System
$\mathbf{9 9 0}$	$\mathbf{9 , 8 5 2}$	Older Than Solar System
Muscovite		
$\mathbf{5 6 0}$	$\mathbf{9 , 5 2 1}$	Older Than Solar System

Ages from 5,459 to 9,852 million years old.

The data in table 7 shows ${ }^{13}$ ages older than the Earth and Solar System.
Table 7

Sample	Mineral	Age
Number	Type	Million Years
$79-173$	Plagioclase	5,800
$79-173$	Hornblende	5,300
$79-459$	Hornblende	5,500
$79-459$	Plagioclase	$\mathbf{7 , 0 0 0}$
$79-461$	Hornblende	5,500
$79-461$	Plagioclase	$\mathbf{7 , 3 0 0}$

Ages from 5,300 to 7,300 million years old.

Rocks Older Than The Earth

Ages In The Allende Meteorite

This dating was done in $1983{ }^{\mathbf{1 4}}$ and gave ages between 2,990 and 8,880 million years old. ${ }^{15}$ The author discusses the problem and proposed solutions:
"The existence in the Allende meteorite of coarse-grained Ca-Al-rich inclusions (CAI) with 40Ar/39Ar apparent ages exceeding the age of the solar system was reported by Jessberger and Dominik [1] and Jessberger et al. [2] and confirmed by Herzog et al. [3]." ${ }^{16}$

Table 8

Sample	Age A	Error A	Age B	Error B
Name	Million Years	Million Years	Million Years	Million Years
EGG 1				
700	5,070	40		
1000	5,190	50		
1200	4,730	50		
1650	4,570	50		
Total	4,860	50	4,800	100
EGG 2				
700	7,370	420		
1000	4,670	320		
1200	3,430	460		
1650	4,510	240		
Total	4,470	200	4,470	200
EGG 3				
700	8,880	120		
1000	6,450	90		
1200	2,990	230		
1650	5,660	270		
Total	5,930	120	5,020	120

Ages from 2,990 to 8,880 million years old.

Below [Table 9] we can see some more dating ${ }^{17}$ that was done on the same meteorite by Herzog in 1980. He give three possible reasons ${ }^{18}$ why the dates are in such conflict with the standard evolutionary model:

1

"The coarse-grained Ca-Al-rich inclusions are really older than 4.6 G.y., associated with in situ decay of K in pre-solar dust."
$\underline{2}$
"The excess Argon 40 and Argon 36 could be due to atmospheric contamination."

$\underline{3}$

"The excess 40 and the trapped 36 may have come from the degassing of matrix and/or rim material sometime in the interval 3.6-4.1 G.y. ago."

Table 9

Mineral	Age	Error
System	Million Years	Million Years
Vein	8,500	700
Spinel	6,900	800
Vein	5,250	140
Spinel	6,400	500
Bulk	5,120	20
Bulk	5,100	100
01. Skel.	6,290	10

Ages from 5,100 to 8,500 million years old.

U-Th-Pb, Sm-Nd And Rb-Sr Model Ages

Below we can see some more dating ${ }^{19}$ that was done on some Moon rocks by Oberli in 1978. Oberli states ${ }^{20}$ that the $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ data is concordant but the Neodymium dates are uncertain. Again it is just an arbitrary choice he makes as to which date is certain and which date is not.

Table 10

Sample	Pb-206/Pb-207	Pb-206/U-238	Pb-208/Th-232	Nd-143/Nd-144	Rb-87/Sr-86
Number	Million Years				
$\mathbf{6 6 0 7 5 , 1 1 D}$	$\mathbf{5 , 3 7 1}$	$\mathbf{7 , 7 9 4}$	$\mathbf{8 , 2 8 0}$		
$\mathbf{6 6 0 7 5 , 1 1}$	$\mathbf{5 , 3 5 8}$	$\mathbf{7 , 7 4 0}$	$\mathbf{8 , 3 7 5}$	$\mathbf{4 , 5 3 0}$	$\mathbf{4 , 2 4 0}$

Ages from 4,240 to 8,375 million years old.

Gerontology Of The Allende Meteorite

This article appeared ${ }^{\mathbf{2 1}}$ in Nature magazine in 1979. Jessberger admits that the wildly discordant ages cannot be due to normal processes:
"In the Allende meteorite several elements are found to have an isotopic composition that cannot be due to radioactive or spallation or fractionation processes." ${ }^{22}$
"In the most widely accepted theory a supernova triggered the collapse of the solar nebula, and the anomalously high ages would be due to an enhanced $40 \mathrm{~K} / 39 \mathrm{~K}$ isotopic ratio produced in the explosive carbon burning shell of the supernova? In another, controversial interpretation these ages could have chronological significance, as here the presolar grains are relicts from various old stellar nucleosynthetic and condensation processes unrelated to the formation of the Solar System." 22

He then quotes several ${ }^{23,24,25}$ science journals for an explanation. He thinks the ages could be residue from an ancient supernova or contamination for pre galactic dust not related to the formation of the Solar System. Again, like Oberli his solution is totally unprovable. How would you test such a hypothesis? Some of the dates are older than the galaxy. How do we know that Earth rocks have not been contaminated in such a way? During the formation of the Solar System, the Earth might have absorbed such materials. His choice of "true" ages is just guess and not provable science.

Table 9

Meteorite	Age	Error	Age	Error
Sample 17	Million Years	Million Years	Million Years	Million Years
$\mathbf{5 0 0}$	$\mathbf{7 , 6 8 0}$	$\mathbf{8 0}$	$\mathbf{4 , 9 6 0}$	$\mathbf{4 2 0}$
$\mathbf{5 8 0}$	$\mathbf{5 , 8 3 0}$	$\mathbf{8 0}$	$\mathbf{4 , 6 0 0}$	$\mathbf{1 6 0}$
$\mathbf{6 6 0}$	$\mathbf{5 , 3 5 0}$	$\mathbf{4 0}$	$\mathbf{4 , 9 7 0}$	$\mathbf{6 0}$
$\mathbf{7 4 0}$	$\mathbf{5 , 0 9 0}$	20	$\mathbf{4 , 9 7 0}$	$\mathbf{4 0}$
$\mathbf{8 2 0}$	$\mathbf{5 , 0 8 0}$	$\mathbf{4 0}$	$\mathbf{4 , 9 9 0}$	$\mathbf{6 0}$
$\mathbf{8 9 0}$	$\mathbf{5 , 2 1 0}$	$\mathbf{4 0}$	$\mathbf{5 , 2 1 0}$	$\mathbf{4 0}$
$\mathbf{9 5 0}$	$\mathbf{4 , 9 7 0}$	$\mathbf{6 0}$	$\mathbf{4 , 9 7 0}$	$\mathbf{6 0}$
$\mathbf{1 , 0 1 0}$	$\mathbf{4 , 9 7 0}$	$\mathbf{3 0}$	$\mathbf{4 , 9 7 0}$	$\mathbf{3 0}$
$\mathbf{1 , 0 7 0}$	5,340	$\mathbf{4 0}$	$\mathbf{5 , 3 4 0}$	$\mathbf{4 0}$
$\mathbf{1 , 1 3 0}$	$\mathbf{5 , 5 4 0}$	$\mathbf{2 0}$	$\mathbf{5 , 4 3 0}$	$\mathbf{4 0}$
$\mathbf{1 , 2 0 0}$	$\mathbf{6 , 2 1 0}$	$\mathbf{1 0 0}$	$\mathbf{5 , 2 5 0}$	$\mathbf{2 4 0}$
$\mathbf{1 , 2 8 0}$	$\mathbf{5 , 1 9 0}$	$\mathbf{1 9 0}$	$\mathbf{1 , 4 6 0}$	$\mathbf{1 , 4 8 0}$
$\mathbf{1 , 3 8 0}$	$\mathbf{7 , 2 0 0}$	$\mathbf{5 9 0}$	$\mathbf{2 , 6 7 0}$	$\mathbf{5 , 6 5 0}$
Total	$\mathbf{5 , 5 0 0}$	20	$\mathbf{5 , 1 2 0}$	$\mathbf{6 0}$

Ages from 1,460 to 7,680 million years old.

Table 10

Meteorite	Age	Error	Age	Error
Sample 18	Million Years	Million Years	Million Years	Million Years
$\mathbf{4 5 0}$	$\mathbf{1 1 , 0 1 0}$	$\mathbf{6 0}$	$\mathbf{4 , 5 2 0}$	$\mathbf{2 , 2 4 0}$
$\mathbf{5 8 0}$	$\mathbf{8 , 0 6 0}$	$\mathbf{1 4 0}$	$\mathbf{4 , 4 7 0}$	$\mathbf{5 0 0}$
$\mathbf{6 7 0}$	$\mathbf{7 , 5 0 0}$	$\mathbf{4 0}$	$\mathbf{4 , 9 7 0}$	$\mathbf{1 6 0}$
$\mathbf{7 5 0}$	$\mathbf{6 , 3 1 0}$	$\mathbf{3 0}$	$\mathbf{4 , 9 0 0}$	$\mathbf{9 0}$
$\mathbf{8 3 0}$	$\mathbf{5 , 3 7 0}$	$\mathbf{2 0}$	$\mathbf{5 , 1 3 0}$	$\mathbf{6 0}$
$\mathbf{9 0 0}$	$\mathbf{4 , 9 6 0}$	$\mathbf{4 0}$	$\mathbf{4 , 9 6 0}$	$\mathbf{4 0}$
$\mathbf{9 7 0}$	$\mathbf{4 , 9 0 0}$	$\mathbf{4 0}$	$\mathbf{4 , 9 0 0}$	$\mathbf{4 0}$
$\mathbf{1 , 0 4 0}$	$\mathbf{4 , 8 9 0}$	$\mathbf{4 0}$	$\mathbf{4 , 8 9 0}$	$\mathbf{4 0}$
$\mathbf{1 , 1 1 0}$	$\mathbf{4 , 9 0 0}$	$\mathbf{3 0}$	$\mathbf{4 , 9 0 0}$	$\mathbf{3 0}$
$\mathbf{1 , 1 9 0}$	$\mathbf{4 , 8 2 0}$	$\mathbf{2 0}$	$\mathbf{4 , 8 2 0}$	$\mathbf{2 0}$
$\mathbf{1 , 3 0 0}$	$\mathbf{5 , 3 7 0}$	$\mathbf{1 0 0}$	$\mathbf{5 , 3 7 0}$	$\mathbf{1 0 0}$
Total	$\mathbf{6 , 0 5 0}$	$\mathbf{4 0}$	$\mathbf{5 , 0 8 0}$	$\mathbf{5 0}$

Pre Cambrian Earth Rocks

This dating ${ }^{26}$ was done in 2005 at the Heidelberg University in Germany. The author comments on the cause for such absurd dates:
"The bulk $40 \mathrm{Ar} / 36 \mathrm{Ar}$ ratio is more radiogenic than atmospheric composition, indicating-in addition to an atmospheric component - the presence of a slight but detectable contribution of an excess 40 Ar component, i.e., 40 Ar trapped from an external source, because it cannot be due to in situ decay of 40 K . This circumstance is indicated by the very high apparent ages (up to 5 Ga) of the irradiated type I shungite (Appendix Table A1)." ${ }^{27}$

Below we can see some of the dates ${ }^{\mathbf{2 8}}$ given in the article. Several dates are older than the theory of evolution allows:

Table 11

Sample	Age	Error
Temperature	Million	Million
Centigrade	Years	Years
$\mathbf{8 2 0}$	$\mathbf{4 , 9 6 4}$	$\mathbf{2 3 9}$
$\mathbf{8 5 0}$	$\mathbf{4 , 9 1 6}$	$\mathbf{1 1 4}$
$\mathbf{8 8 0}$	$\mathbf{5 , 2 6 9}$	$\mathbf{1 2 0}$
$\mathbf{9 1 0}$	$\mathbf{5 , 8 0 4}$	$\mathbf{1 2 3}$
$\mathbf{9 4 0}$	$\mathbf{5 , 4 2 5}$	$\mathbf{1 0 9}$
$\mathbf{9 7 0}$	$\mathbf{4 , 8 4 3}$	$\mathbf{1 1 4}$
$\mathbf{1 0 7 0}$	$\mathbf{5 , 0 5 4}$	$\mathbf{2 0 5}$

Ages from 4,843 to 5,804 million years old.

Mount Isa, Queensland

These rocks were dated in 2006 by Mark Kendrick ${ }^{29}$ from the University of Melbourne. The data in tables 12 to 17 shows ages ${ }^{30}$ of Earth rocks from 4,700 to 10,000 million years old.

Table 12

Sample	Million	Age
Eloise Mine	Years	Category
Cr-2	5,620	Older Than Solar System
Cr-3	$\mathbf{5 , 5 1 1}$	Older Than Solar System
$\mathbf{3 0 0}$	$\mathbf{6 , 1 2 7}$	Older Than Solar System
1400	5,370	Older Than Solar System
Total	4,804	Older Than Earth

Ages from 4,804 to 5,620 million years old.
Table 13

Sample	Million	Age
Eloise Mine	Years	Category
250	6,442	Older Than Solar System
350	$\mathbf{6 , 3 9 3}$	Older Than Solar System
450	4,931	Older Than Earth
1200	4,760	Older Than Earth
Total	4,777	Older Than Earth

Ages from 4,760 to 6,442 million years old.

Rocks Older Than The Earth

Table 14

Sample	Million	Age
Eloise Mine	Years	Category
$\mathbf{2 0 0}$	$\mathbf{7 , 4 1 2}$	Older Than Solar System
250	$\mathbf{9 , 9 6 9}$	Older Than Galaxy
300	$\mathbf{8 , 6 5 5}$	Older Than Solar System
350	5,871	Older Than Solar System
400	$\mathbf{6 , 5 6 8}$	Older Than Solar System
450	$\mathbf{6 , 0 6 0}$	Older Than Solar System
$\mathbf{1 2 0 0}$	$\mathbf{5 , 2 0 1}$	Older Than Solar System
1300	4,805	Older Than Earth
1400	5,049	Older Than Solar System
Total	$\mathbf{5 , 6 0 1}$	Older Than Solar System

Ages from 4,805 to 9,969 million years old.

Table 15

Sample	Million	Age
Osborne Mine	Years	Category
$\mathbf{3 0 0}$	7,715	Older Than Solar System

Table 16

Sample	Million	Age
Railway Fault	Years	Category
200	$\mathbf{5 , 1 7 6}$	Older Than Solar System
350	$\mathbf{4 , 7 5 9}$	Older Than Earth

Table 17

Sample	Million	Age
Railway Fault	Years	Category
$\mathbf{C r}$	$\mathbf{4 , 8 4 4}$	Older Than Earth
Cr	$\mathbf{4 , 8 8 3}$	Older Than Earth
Cr	$\mathbf{5 , 4 1 8}$	Older Than Solar System
Cr	$\mathbf{5 , 2 3 8}$	Older Than Solar System

Ages from 4,844 to 5,418 million years old.

Rocks Older Than The Earth

Conclusion

Dalrymple states:
"Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{31}$
Looking at some of the dating it is obvious that precision is much lacking. He then goes on:
"Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{32}$

The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

http://creation.com/radiometric-dating-questions-and-answers

References

7 http://arxiv.org/pdf/astro-ph/0506458v1.pdf
The age of the Galactic disk, By E. F. del Peloso and L. da Silva
Astronomy \& Astrophysics, Manuscript no. 3307, February 2, 2008
8 Excess 40Ar in metamorphic rocks from Broken Hill, By T. Mark Harrison
Earth and Planetary Science Letters, 1981, Volume 55, Pages 123-149
C:\Essays\Iso_Plot_Dates\Good_01.pdf
9 Reference 8, Page 141
10 Reference 8, Page 147
11 Reference 8, Page 124
12 Reference 8, Page 128-133
13 Reference 8, Page 137

Rocks Older Than The Earth

14 Ages in Allende Inclusions, By I. M. Villa
Earth and Planetary Science Letters, 1983, Volume 63, Pages 1 - 12
C:\Essays\Iso_Plot_Dates\Good_02.pdf
Reference 14, Page 5
Reference 14, Page 1
39Ar -40Ar Systematics Of Allende Inclusions, Page 3, By G. F. Herzog http://www.lpi.usra.edu/meetings/lpsc1980/pdf/1155.pdf

Reference 17, Page 2.
U-Th-Pb, Sm-Nd And Rb-Sr Model Ages, Page 833, By F. Oberli
http://www.lpi.usra.edu/meetings/lpsc1978/pdf/1289.pdf
Reference 19, Pages 832, 834
Gerontology of the Allende meteorite, By Elmar K. Jessberger
Nature, 1979, Volume 277, Pages 554-556
C:\Essays\Iso_Plot_Dates\Good_03.pdf
Reference 21, Page 554
Cameron, A, G. W. \& Truran. J. W. Icarus, 1977, Volume 30, Page 447.
Clayton D, D, Nature, 1975, Volume 257, Page 36.
Clayton D. D., Earth Planetary Science Letters, 1977, Volume 36, Page 381.
Argon isotope fractionation, By Mario Trieloff
Geochimica et Cosmochimica Acta, 2005, Volume 69, Number 5, Pages 1253-1264
C:\Essays\Iso_Plot_Dates\Good_06.pdf
Reference 26, Page 1254
Reference 26, Page 1263
Evaluation of 40Ar-39Ar quartz ages, By M.A. Kendrick
Geochimica et Cosmochimica Acta, 2006, Volume 70, Pages 2562-2576
C:\Essays\Iso_Plot_Dates\Good_08.pdf
Reference 29, Pages 2573-2575
31 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

Reference 31, Page 23

www.creation.com

Rocks Older Than The Universe
 By Paul Nethercott
 May 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

How can Earth rocks be dated as being older than the Big Bang? Here are quotes from several articles taken from major geology magazines which give absolutely absurd dates.

Trillion Year Old Rocks!

These rocks from Black Hills, South Dakota were dated in 1970 giving ridiculous dates. The oldest [Trillion Years!] is 60 times older than the Big Bang explosion. The article simply says: "Anomalous age data for pegmatite minerals." ${ }^{7}$

Table 1

Table 5.		Rb-Sr Date	Rb-Sr Date
Sample/Mines Mineral	Mineral Type	Million Years	Billion Years
Hugo Mine	Albite	7,100	7
Hugo Mine	Apatite	900,000	900
Hugo Mine	Lithiophyllite	53,000	53
Tin Mountain	Montebraeite	36,000	36
Tin Mountain	Apatite	75,000	75
Bob Ingersoll Mine	Montebrasite	81,000	81
Bob Ingersoll Mine	Apatite	460,000	460

Rocks 18 Billion Years Old

This rock was from the Great Northern Peninsula, Newfoundland. It was dated in 1974. As the article says: "The most striking of these is the consistent pattern of anomalously high apparent ages obtained for high temperature fractions (i.e. fraction s corresponding to temperatures $>925-950^{\circ} \mathrm{C}$). These anomalously high apparent ages almost certainly reflect the presence of excess radiogenic argon." The table in the article ${ }^{9}$ lists 11 rock samples with radical discordant dates. The first two rocks have internal ages varying between the "youngest" and "oldest" by a factor of 2000% and 1000% respectively.

Table 2

Maximum Age	Minimum Age	Difference	Difference
Million Years	Million Years	Million Years	Percentage
18,620	651	17,969	$2,760 \%$

Rocks Older Than The Universe

Rocks 80 Billion Years Old!

Some of these rocks have been dated to be five times older than the Big Bang explosion! These rocks from Yucca Mountain, Nevada were dated in 2008 by U-Th- Pb dating method.

Table 3

Sample	Pb-206/U-238	Pb-208/Th-232	Error	Difference
Number	Million Years	Million Years	Million Years	Percentage
HD2059Pb4-Cc	1,738	12,900	4,040	7,963
HD2089APb1-Cc1	7,940			
HD2089APb1-Cc2a	6,372			
HD2089APb1-Cc2b	7,504			
HD2089APb1-Cc2c	6,292			
HD2089APb1-Cc3	4,423	28,600	$\mathbf{7 , 7 0 0}$	647
HD2177Pb1-Cc	20,209	1,555	140	7,296
HD2233Pb1-Ch2	8	$\mathbf{8 2 , 0 3 0}$	180,500	$1,986,199$
HD2233Pb2-Ch2	7	57,900	40,800	$1,153,386$

As we can see form the table below that some of the dates are almost 2 million percent discordant. That means that the dating methods can give ages for the same rock that vary by a factor of 20,000 . One part of the rock is dated as being 20,000 times older than another.

Table 4

Sample	Difference	Sample	Difference
Number	Percentage	Number	Percentage
HD2098Pb3-Cc	1,094	HD2059Pb4-Cc	7,963
HD2074Pb2-Cc1	1,224	HD2062Pb1-Cc	12,772
HD2055Pb11-Cc	1,246	HD2074Pb1-Cc3	44,828
HD2062Pb2-Cc	1,311	HD2089APb1-Cc1	49,625
HD2055Pb12-Op	1,467	HD2089APb1-Cc2b	50,027
HD2055Pb12-Cc	1,584	HD2089APb1-Cc2c	$\mathbf{6 9 , 9 1 1}$
HD2089APb2-Cc	1,970	HD2155Pb1-Cc	121,400
HD2109Pb1-Cc	2,083	HD2055Pb11-Op	195,100
HD2065Pb4-Cc	2,691	HD2233Pb2-Ch2	$1,153,386$
HD2177Pb1-Cc	7,296	HD2233Pb1-Ch2	$1,986,199$

Rocks 22 Billion Years Old
This dating was done in 1990 on rocks from the Ouzzal granite unit in Algeria. Maluski used Argon dating and it gave dates over 22 billion years old. ${ }^{12}$

Table 5

Sample	Maximum Age	Minimum Age	Average Age	Age Difference	Percent
Name	Million Years	Million Years	Million Years	Million Years	Difference
A. TEK 58 plagioclase 1	13,435	1,800	7,043	$\mathbf{1 1 , 6 3 5}$	746%
B. TEK 58 plagioclase 2	$\mathbf{8 , 0 7 1}$	2,446	$\mathbf{6 , 0 2 4}$	5,625	329%
C. TEK 58 plagioclase 3	15,407	1,214	3,857	14,193	1269%
D. TEK 58 plagioclase 4	10,776	1,800	4,650	8,976	598%
E. TEK 58 pyroxene	11,621	5,744	$\mathbf{9 , 9 0 9}$	5,877	202%
F. TEK 58 biotite	4,522	1,700	2,147	2,822	266%
G. TEK 58 garnet	22,090	3,716	11,685	18,374	594%

Rocks Older Than The Universe

Below we can see in table 6 some of the extremely discordant dates.
Table 6

A. Plagioclase 1	B. Plagioclase 2	C. Plagioclase 3	D. Plagioclase 4	E. Pyroxene	G. Garnet
Million Years					
5,062	5,008	6,045	5,360	9,150	7,361
6,027	5,410	7,995	5,564	9,276	8,311
6,303	5,712	11,804	6,424	9,564	8,906
6,489	5,739	15,407	6,452	9,684	10,232
7,492	5,892		7,318	9,874	10,310
9,228	5,983		7,689	9,899	10,790
11,783	6,453		10,776	9,943	11,448
13,263	6,785			10,097	11,568
13,287	6,939			10,102	11,961
13,435	7,372			10,314	12,780
	7,779			10,521	13,750
	8,071			10,578	14,689
				10,610	16,224
				10,617	19,945
				10,685	20187
				10,729	20,272
				10,736	20,742
				10,873	22,090
				10,889	
				11,041	
				11,288	
				11,382	
				11,389	
				11,396	
				11,621	

Maluski comments: "Apparent ages as old as $10-11 \mathrm{Ga}$ are obtained between 450 and 1100 C , which implies that the excess component is widely distributed over all the sites without a preferential location. The internal age discordance is mainly due to the low amount and variability of 39 Ar released at each temperature increment. This is probably because K occurs as microscopic impurities within pyroxene, the degassing of which is very irregular." ${ }^{12}$

Volcanic Rocks 15 Billion Years Old

The article describes Rubidium-Strontium dating of volcanic rocks in the Highwood Mountains and Eagle Buttes, Montana, U.S.A. This was performed in 1994. Ages ${ }^{13}$ greater than the Big Bang date were obtained.

Table 7

6.46	Billion Years Old
6.83	Billion Years Old
10.8	Billion Years Old
15.5	Billion Years Old

"These extreme isotopic characteristics are accompanied by parent daughter ratios that give all the Highwood peridotites old model ages ($\mathrm{Rb}-\mathrm{Sr}, 2.14-15.5 \mathrm{Ga} ; \mathrm{Sm}-\mathrm{Nd}, 2.78-6.83 \mathrm{Ga}$; Table 1) compared to the other ultramafic samples." ${ }^{14}$

15 Billion Years Old

This article ${ }^{15}$ refers to dating of xenoliths from the Kaapvaal craton in South Africa. These rocks were dated in 1995.

Table 8

	Table 8
8.5	Billion Years Old
10.2	Billion Years Old
11.1	Billion Years Old
15.6	Billion Years Old

Pearson's explanation is: "For example, several of the peridotite Re/Os model ages calculated using measured 187$\mathrm{Re} / 188$-Os (TM, in Table 2) either give geologically unreasonable ages or do not intersect the Bulk Earth evolution line at all. Walker et al. [14] reasoned that the highly refractory compositions of Kaapvaal peridotites could have led to complete removal of Re during formation." ${ }^{16}$

Moon Rocks 28 Billion Years Old

The following dating was done in 1972. Table Nine ${ }^{18}$ gives ages twice as old as the Big Bang explosion date. Table Ten ${ }^{19}$ gives ages twice as old as the Moon and Solar System.

Table 9

Pb-207	Pb-206	Pb-207	Pb-208
Pb-206	U-238	U-235	Th-232
Billion Years	Billion Years	Billion Years	Billion Years
5.58	9.21	6.43	24.92
5.65	8.73	6.39	23.50
5.43	10.28	6.54	28.14

Table 10

Pb-207	Pb-206	Pb-207	Pb-208
Pb-206	U-238	U-235	Th-232
Billion Years	Billion Years	Billion Years	Billion Years
5.31	6.98	5.74	10.79
5.33	6.81	5.71	10.34
5.28	7.15	5.76	11.23

Rocks 23 Billion Years Old

This article describes Rubidium-Strontium dating of Precious Metal Veins of the Coeur D'Alene Mining District, Idaho. This dating ${ }^{19}$ was done in 2002 and gave ages over 20 billion years old.

Table 10

Sample	Age Million	Difference
Number	Years	Percentage
$858-07 \mathrm{G}$	4,475	
$858-07 \mathrm{H}$	1,727	159%
$858-07 \mathrm{~L}$	7,816	
$858-07 \mathrm{M}$	1,195	554%
$858-07 \mathrm{U}$	971	
$858-07 \mathrm{~V}$	2,630	171%
$858-08 \mathrm{C}$	1,855	
$858-08 \mathrm{D}$	6,105	229%
$858-08 \mathrm{AA}$	3,028	
$858-08 \mathrm{AB}$	588	415%
$858-09 \mathrm{D}$	1,490	
$858-09 \mathrm{E}$	754	98%
$858-09 \mathrm{~F}$	2,453	
$858-09 \mathrm{G}$	682	259%
$858-09 \mathrm{~J}$	719	
$858-09 \mathrm{~K}$	2,696	274%
$858-09 \mathrm{~L}$	395	
$858-09 \mathrm{M}$	1,465	270%
$918-13 \mathrm{~A}$	278	
$918-13 \mathrm{~B}$	2,209	694%
$918-13 \mathrm{C}$	23,312	
$918-13 \mathrm{D}$	968	2308%
$918-15 \mathrm{~L}$	873	
$918-15 M$	4,291	391%

The samples are in pairs. Each pair is taken from the exact same location. Some dates are between two and twenty three times discordant for the one rock. The one dating method will give two different dates for the same rock! One date is twenty three times older than the younger one.

Conclusion

Even though it is commonly claimed to be absolute proof of millions of years, there are many problems with radiometric dating. The recently published "Radioisotopes \& the Age of the Earth" "Earth's Catastrophic Past" and other publications by young earth creationists shows that accepting a literal view of the Genesis creation account and a young age of the earth can be defended scientifically and old age successfully rebutted.

Exodus 20:8-11

8 Remember the Sabbath day, to keep it holy. 9 Six days shall you labour, and do all your work: 10 But the seventh day is the Sabbath of the LORD your God: in it you shall not do any work, you, nor your son, nor your daughter, your manservant, nor your maidservant, nor your cattle, nor your stranger that is within your gates: 11 For in six days the LORD made heaven and earth, the sea, and all that in them is, and rested the seventh day: wherefore the LORD blessed the Sabbath day, and hallowed it.

References

19 Robert J. Fleck, Age and Origin of Base and Precious Metal, Economic Geology, 2002, Volume 97, Pages 35-37

www.creation.com

The Rubidium-Strontium Dating Method

By Paul Nethercott October 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." 4 "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ${ }^{7}$ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically with the Rubidium $/ \mathrm{Strontium}$ ages. $\mathrm{The} \mathrm{U} / \mathrm{Th} / \mathrm{Pb}$ ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang?

If we use isotopic formulas ${ }^{8-11}$ given in standard geology text we can arrive at ages from the $\mathrm{Rb} / \mathrm{Sr}$ and $\mathrm{Nd} / \mathrm{Sm}$ ratios. The formula for $\mathrm{Rb} / \mathrm{Sr}$ age is given as:
$t=\frac{2.303}{\lambda} \log \left(\frac{(87 S r / 86 S r)-(87 S r / 86 S r)_{0}}{(87 R b / 86 S r)}+1\right)$

Where t equals the age in years. λ equals the decay constant. $(87 \mathrm{Sr} / 86 \mathrm{Sr})=$ the current isotopic ratio. $(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=$ the initial isotopic ratio. $(87 \mathrm{Rb} / 86 \mathrm{Sr})=$ the current isotopic ratio. The same is true for the formula below.
$t=\frac{2.303}{\lambda} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(147 S m / 144 N d)}+1\right)$

Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Early Archaean Rocks At Fyfe Hills

These early Archaean rocks from Fyfe Hills in Antarctica were dated in 1982 by scientists form the Australian Bureau of Mineral Resources, The University of Adelaide, Adelaide, and the University of Tasmania, Hobart. ${ }^{12}$ Several isotopic samples ${ }^{13}$ gave negative ages [-24 billion, -14 billion, -108 billion, -43 billion]. How can a rock that exists in the present and formed in the past have formed 108 billion years in the future?

87Rb/86Sr, Ages Dating Summary
Average
Maximum
Minimum
Difference

Table 1
The Uranium/Lead ratios ${ }^{14}$ give uniform values of 2,500 million years old. The thirty $87 \mathrm{Rb} / 86 \mathrm{Sr}$ ratios have nineteen that give ages much older [3,039 to 4,925 Million years] and seven [1,835 to -108,362 Million years] much younger. The author's choice of age is purely arbitrary.

Shock-Melted Antarctic LL-Chondrites

These meteorite samples were dated in 1990 by scientists from the Department of Earth Sciences, Kohe University, Japan. ${ }^{15}$ According to the article ${ }^{16}$ the meteorite is 4.55 billion years old. The article claims that the maximum range of model ages is 3.11 to 7.33 billion years. ${ }^{17}$ If we run the isotopic ratios through Microsoft Excel we get ages from 4 to 21 billion years old. Thirty six dates are over 5 billion years. Nine are over 10 billion years. If the Solar System is less than 5 billion years old how can the meteorite be older than the assumed age of the galaxy [10 billion years]?

87Rb/86Sr, Maximum Ages		
Age	Age	Age
Million Years	Million Years	Million Years
21,611	$\mathbf{9 , 0 1 5}$	$\mathbf{6 , 7 5 6}$
14,466	$\mathbf{8 , 9 8 8}$	$\mathbf{6 , 5 5 6}$
12,968	$\mathbf{8 , 9 2 1}$	$\mathbf{6 , 1 9 2}$
12,354	$\mathbf{8 , 8 6 9}$	$\mathbf{6 , 1 5 7}$
11,946	$\mathbf{8 , 7 5 3}$	$\mathbf{5 , 9 8 1}$
10,868	$\mathbf{8 , 6 7 5}$	$\mathbf{5 , 6 7 7}$
10,727	$\mathbf{8 , 5 5 6}$	$\mathbf{5 , 4 9 1}$
10,623	$\mathbf{8 , 4 0 5}$	$\mathbf{5 , 4 8 3}$
10,162	$\mathbf{8 , 1 5 3}$	$\mathbf{5 , 4 5 8}$
9,888	$\mathbf{7 , 5 9 0}$	$\mathbf{5 , 4 5 3}$
9,237	$\mathbf{6 , 9 4 7}$	$\mathbf{5 , 3 8 8}$
9,161	$\mathbf{6 , 8 9 9}$	$\mathbf{5 , 3 1 9}$

87Rb/86Sr, Ages Dating Summary

Average	$\mathbf{8 , 5 8 5}$
Maximum	$\mathbf{2 1 , 6 1 1}$
Minimum	$\mathbf{3 , 9 6 9}$
Difference	$\mathbf{1 7 , 6 4 2}$

Table 3

Diamonds And Mantle-Derived Xenoliths

These samples from South African diamond mines were dated in 1979 by scientist from the University of the Witwatersrand, Johannesburg, South Africa. According to the isochron diagrams ${ }^{17}$ the age of the sample is 2.4 billion years. If we run the Lead isotope ratios ${ }^{18}$ through Isoplot we get the following values:

Lead Isotope Ages

Lead	
Average	$\mathbf{4 , 9 9 5}$
Maximum	$\mathbf{5 , 2 4 9}$
Minimum	$\mathbf{4 , 8 8 5}$
Std Deviation	$\mathbf{1 2 2}$

Table 4
If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{18}$ through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary	
Average	$\mathbf{2 8 , 4 2 9}$
Maximum	$\mathbf{9 1 , 9 5 7}$
Minimum	$\mathbf{3 , 2 5 7}$
Difference	$\mathbf{8 8 , 7 0 0}$

Table 5
There is almost a 90 billion years difference between the oldest and youngest dates. Below we can see some of the maximum ages and how stupid they are.
$\underline{\text { 87Rb/86Sr, Maximum Ages }}$

Age	Age
Million Years	Million Years
91,957	18,139
53,584	17,036
51,582	15,716
43,201	15,340
33,542	13,633
24,366	12,202

Table 6

87Rb/87Sr Isochron Of The Norton County Achondrite

This meteorite dating was done in 1967 by scientist ${ }^{20}$ from the California Institute of Technology. In this article we will find that dating done 45 years later [2008] is giving just as absurd results. According to the Argon dating results ${ }^{21}$ the meteorite is between 2.3 and 5.1 billion years old. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{22}$ through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary

Average	$\mathbf{1 , 3 7 5}$
Maximum	$\mathbf{4 , 8 7 1}$
Minimum	$\mathbf{- 1 6 , 2 7 7}$
Difference	$\mathbf{2 1 , 1 4 9}$

Table 7

Base and Precious Metal Veins

According to the article the dating [Coeur D'Alene Mining District, Idaho] was done in 2002 by scientists from the U.S. Geological Survey, California, the Department of Earth and Planetary Sciences, Washington University, Saint Louis, Missouri, the Lawrence Livermore National Laboratory, Livermore, California and the Sunshine Precious Metals Company, Idaho. ${ }^{22}$ If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{23}$ from Table 1 in the article through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary

Average	128,708
Maximum	508,074
Minimum	$\mathbf{7 , 9 9 0}$
Difference	$\mathbf{5 1 6 , 0 6 4}$
Table 8	

There is a 500 billion year difference between the youngest and oldest dates. The average age is over 120 billion years. Below we can see some of the maximum ages and how stupid they are.

87Rb/86Sr, Maximum Ages

Age	Age	Age	Age
Million Years	Million Years	Million Years	Million Years
508,074	157,304	125,399	$\mathbf{8 6 , 4 8 3}$
314,336	151,142	114,796	$\mathbf{7 5 , 6 8 4}$
302,580	150,089	114,795	$\mathbf{7 2 , 9 1 5}$
287,077	149,802	113,950	$\mathbf{7 1 , 2 2 5}$
207,257	144,826	111,884	$\mathbf{6 9 , 7 2 9}$
201,185	142,977	110,719	$\mathbf{6 3 , 9 3 4}$
191,104	138,115	109,164	$\mathbf{6 3 , 4 0 6}$
190,573	134,866	108,617	$\mathbf{6 1 , 7 4 0}$
189,167	134,061	108,278	$\mathbf{5 6 , 7 3 5}$
186,066	134,039	102,140	$\mathbf{5 2 , 1 1 7}$
183,607	132,885	99,952	47,926
183,225	132,746	$\mathbf{9 3 , 8 4 8}$	46,968
163,764	131,670	$\mathbf{8 9 , 2 4 6}$	$\mathbf{3 9 , 9 4 4}$
158,436	130,664	$\mathbf{8 8 , 6 2 6}$	$\mathbf{3 7 , 6 2 3}$
158,282	129,495	$\mathbf{8 7 , 7 0 8}$	16,153

Table 9
If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{24}$ from Table 2 in the article through Microsoft Excel we get the following values:
87Rb/86Sr, Ages Dating Summary

Average	139,471
Maximum	508,074
Minimum	12,314
Difference	520,388

Table 10
There is a 520 billion year difference between the youngest and oldest dates. The average age is almost 140 billion years. Below we can see some of the maximum ages and how stupid they are. The oldest dates is over half a trillion years old.

87Rb/86Sr, Maximum Ages		
Age	Age	Age
Million Years	Million Years	Million Years
508,074	147,429	87,708
314,336	$\mathbf{1 3 8 , 8 8 2}$	$\mathbf{8 4 , 7 1 6}$
165,542	118,679	$\mathbf{8 2 , 2 9 4}$
157,714	98,450	$\mathbf{5 9 , 0 8 0}$
157,589	$\mathbf{9 1 , 4 5 0}$	45,663
151,317	$\mathbf{8 9 , 2 3 6}$	$\mathbf{1 2 , 3 1 4}$
Table 11		

If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{\mathbf{2 5}}$ from Table 4 in the article through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary

Average	$\mathbf{8 8 , 5 7 1}$
Maximum	$\mathbf{2 8 8 , 7 7 5}$
Minimum	$\mathbf{- 1 7 0 , 2 3 2}$
Difference	$\mathbf{4 5 9 , 0 0 7}$

Table 12
There is a 560 billion year difference between the youngest and oldest dates. The average age is almost 90 billion years. Below we can see some of the maximum ages and how stupid they are. The oldest date is almost 300 billion years old. The youngest is negative 170 billion years old.

87Rb/86Sr, Maximum Ages

Age	Age	Age	Age	Age	Age
Million Years					
$\mathbf{2 8 8 , 7 7 5}$	$\mathbf{9 7 , 2 4 2}$	$\mathbf{9 4 , 8 1 9}$	$\mathbf{9 3 , 0 7 9}$	$\mathbf{9 0 , 8 9 1}$	$\mathbf{8 5 , 9 2 4}$
$\mathbf{1 0 2 , 7 1 6}$	$\mathbf{9 7 , 1 1 7}$	$\mathbf{9 4 , 4 6 5}$	$\mathbf{9 2 , 9 9 5}$	$\mathbf{9 0 , 7 0 0}$	$\mathbf{8 5 , 8 0 5}$
101,380	$\mathbf{9 7 , 0 3 3}$	$\mathbf{9 4 , 4 5 3}$	$\mathbf{9 2 , 9 7 2}$	$\mathbf{9 0 , 5 3 6}$	$\mathbf{8 5 , 2 6 3}$
100,277	$\mathbf{9 6 , 7 9 2}$	$\mathbf{9 4 , 4 3 1}$	$\mathbf{9 2 , 9 6 7}$	$\mathbf{9 0 , 3 6 7}$	$\mathbf{8 4 , 9 9 0}$
99,779	$\mathbf{9 6 , 6 8 7}$	$\mathbf{9 4 , 4 0 8}$	$\mathbf{9 2 , 9 6 3}$	$\mathbf{9 0 , 1 2 7}$	$\mathbf{8 3 , 9 1 4}$
$\mathbf{9 9 , 6 8 3}$	$\mathbf{9 6 , 6 5 5}$	$\mathbf{9 4 , 3 9 7}$	$\mathbf{9 2 , 9 1 5}$	$\mathbf{9 0 , 0 8 9}$	$\mathbf{8 3 , 5 8 4}$
$\mathbf{9 9 , 3 6 9}$	$\mathbf{9 6 , 6 0 2}$	$\mathbf{9 4 , 3 4 5}$	$\mathbf{9 2 , 8 7 8}$	$\mathbf{9 0 , 0 1 8}$	$\mathbf{8 2 , 6 3 9}$
$\mathbf{9 9 , 2 3 8}$	$\mathbf{9 6 , 2 9 3}$	$\mathbf{9 4 , 3 3 9}$	$\mathbf{9 2 , 8 6 3}$	$\mathbf{8 9 , 8 3 8}$	$\mathbf{8 0 , 9 6 2}$
$\mathbf{9 9 , 1 7 7}$	$\mathbf{9 6 , 2 5 2}$	$\mathbf{9 4 , 2 4 9}$	$\mathbf{9 2 , 8 2 9}$	$\mathbf{8 9 , 7 3 6}$	$\mathbf{8 0 , 2 1 4}$
$\mathbf{9 8 , 9 4 8}$	$\mathbf{9 6 , 2 3 6}$	$\mathbf{9 4 , 2 3 5}$	$\mathbf{9 2 , 6 3 4}$	$\mathbf{8 9 , 4 6 6}$	$\mathbf{7 9 , 0 8 2}$
$\mathbf{9 8 , 7 6 5}$	$\mathbf{9 6 , 0 4 3}$	$\mathbf{9 4 , 1 3 9}$	$\mathbf{9 2 , 6 3 0}$	$\mathbf{8 9 , 2 3 6}$	$\mathbf{7 8 , 0 5 3}$
$\mathbf{9 8 , 7 3 6}$	$\mathbf{9 5 , 9 8 1}$	$\mathbf{9 4 , 1 0 0}$	$\mathbf{9 2 , 3 7 4}$	$\mathbf{8 9 , 1 7 1}$	$\mathbf{7 6 , 7 5 0}$
$\mathbf{9 8 , 6 8 5}$	$\mathbf{9 5 , 8 9 4}$	$\mathbf{9 3 , 9 2 8}$	$\mathbf{9 2 , 3 1 5}$	$\mathbf{8 8 , 9 3 2}$	$\mathbf{7 6 , 2 5 6}$
$\mathbf{9 8 , 5 9 1}$	$\mathbf{9 5 , 7 6 1}$	$\mathbf{9 3 , 8 4 1}$	$\mathbf{9 2 , 3 0 9}$	$\mathbf{8 8 , 8 7 6}$	$\mathbf{7 6 , 1 7 8}$
$\mathbf{9 8 , 4 3 6}$	$\mathbf{9 5 , 7 1 1}$	$\mathbf{9 3 , 7 6 6}$	$\mathbf{9 2 , 2 0 5}$	$\mathbf{8 8 , 5 4 0}$	$\mathbf{7 5 , 0 4 8}$
$\mathbf{9 8 , 2 8 5}$	$\mathbf{9 5 , 6 0 9}$	$\mathbf{9 3 , 7 3 0}$	$\mathbf{9 2 , 1 4 0}$	$\mathbf{8 8 , 2 9 5}$	$\mathbf{7 2 , 0 0 4}$
$\mathbf{9 8 , 2 4 3}$	$\mathbf{9 5 , 5 2 2}$	$\mathbf{9 3 , 5 8 2}$	$\mathbf{9 2 , 1 0 8}$	$\mathbf{8 7 , 5 8 5}$	$\mathbf{7 0 , 4 7 9}$
$\mathbf{9 7 , 9 7 9}$	$\mathbf{9 5 , 5 1 0}$	$\mathbf{9 3 , 5 7 4}$	$\mathbf{9 1 , 9 0 6}$	$\mathbf{8 7 , 3 5 9}$	$\mathbf{6 9 , 7 9 0}$
$\mathbf{9 7 , 8 3 0}$	$\mathbf{9 5 , 3 8 8}$	$\mathbf{9 3 , 5 0 4}$	$\mathbf{9 1 , 6 7 4}$	$\mathbf{8 7 , 2 6 0}$	$\mathbf{5 5 , 1 5 7}$
$\mathbf{9 7 , 6 2 8}$	$\mathbf{9 5 , 2 1 8}$	$\mathbf{9 3 , 4 0 1}$	$\mathbf{9 1 , 6 5 0}$	$\mathbf{8 6 , 8 2 6}$	$\mathbf{5 3 , 5 6 8}$
$\mathbf{9 7 , 6 0 4}$	$\mathbf{9 5 , 1 9 7}$	$\mathbf{9 3 , 3 9 4}$	$\mathbf{9 1 , 4 3 5}$	$\mathbf{8 6 , 6 9 1}$	$\mathbf{5 1 , 9 3 4}$
$\mathbf{9 7 , 5 4 5}$	$\mathbf{9 5 , 1 8 5}$	$\mathbf{9 3 , 2 7 1}$	$\mathbf{9 1 , 2 3 8}$	$\mathbf{8 6 , 4 7 4}$	$\mathbf{- 3 9 , 2 0 7}$
$\mathbf{9 7 , 4 2 1}$	$\mathbf{9 5 , 1 2 5}$	$\mathbf{9 3 , 1 9 9}$	$\mathbf{9 1 , 1 8 9}$	$\mathbf{8 6 , 1 3 6}$	$\mathbf{- 8 9 , 6 5 6}$
$\mathbf{9 7 , 4 0 2}$	$\mathbf{9 4 , 9 9 4}$	$\mathbf{9 3 , 1 2 4}$	$\mathbf{9 1 , 0 0 5}$	$\mathbf{8 6 , 0 5 0}$	$\mathbf{\mathbf { 1 7 0 , 2 3 2 }}$

Table 13

The Munchberg Massif, Southern Germany

According the article, this dating was done in 1990 by scientists from the Koln University, Germany and the Scripps Institution of Oceanography, La Jolla, California. ${ }^{26}$ There is an 8 billion year difference between the youngest and oldest dates.

87 $\mathbf{R b}$ /86Sr, Ages Dating Summary	
Average	$\mathbf{1 , 1 0 5}$
Maximum	$\mathbf{7 , 8 3 4}$
Minimum	$\mathbf{- 2 9 6}$
Difference	$\mathbf{8 , 1 3 0}$

Table 14

Rocks of the Central Wyoming Province

These rock samples were dated in 2005 by scientists from the University of Wyoming. ${ }^{27}$ If we run the Rubidium/Strontium and Neodymium/Samarium isotope ratios ${ }^{28}$ from the article through Microsoft Excel we get the following values:

Ages Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{1 4 7 S m} / \mathbf{1 4 4 N d}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$
Average	2,863	$\mathbf{2 , 8 6 9}$	$\mathbf{5 , 1 2 3}$	$\mathbf{1 7 , 8 9 9}$	$\mathbf{1 1 , 9 0 6}$
Maximum	2,952	2,954	$\mathbf{5 , 2 9 4}$	$\mathbf{3 8 , 7 4 6}$	$\mathbf{1 8 , 9 8 5}$
Minimum	$\mathbf{2 , 6 3 0}$	$\mathbf{2 , 6 3 1}$	$\mathbf{4 , 6 6 2}$	$\mathbf{6 , 6 5 0}$	$\mathbf{7 , 2 9 4}$
Std Deviation	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{1 5 2}$	$\mathbf{9 , 7 5 4}$	$\mathbf{3 , 2 9 8}$

Table 15

The Uranium/Lead dates ${ }^{29}$ are up to sixteen billion years older than the Rubidium/Strontium and Neodymium/Samarium dates. The Thorium/Lead dates are up to thirty six billion years older. The so called true age is just a guess.

Basalts From Apollo 15

According the article, this Moon rock dating was done in 1972 by scientists from the California Institute of Technology, Pasadena, California. ${ }^{30}$ According to the essay the rock is 3.4 billion years old. 31 If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{32}$ from Table 4 in the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary

Average	3,045
Maximum	$\mathbf{2 7 , 2 1 1}$
Minimum	$\mathbf{- 3 , 8 0 8}$
Difference	$\mathbf{3 1 , 0 1 9}$

Table 16
Of the 21 isotopic ratios, seven were below 500 million years old. Two were over six billion years old.

History Of The Pasamonte Achondrite

According to the article this meteorite specimen was dated in 1977 by scientists from the United States Geological Survey, Colorado and the Department of Chemistry and Geochemistry, Colorado School of Mines. ${ }^{33}$ The article states that Rubidium/Strontium dating affirms that this material is 4.5 billion years old. ${ }^{34}$ If we run the various isotope ratios ${ }^{34}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

U/Th/Pb Age Dating Summary				
Summary	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th
Average	$\mathbf{3 , 0 8 8}$	$\mathbf{3 , 6 6 6}$	$\mathbf{4 , 5 6 6}$	$\mathbf{2 , 2 6 3}$
Maximum	5,694	5,032	4,963	$\mathbf{1 4 , 8 0 0}$
Minimum	103	865	4,440	$\mathbf{- 1 0 , 7 0 0}$
Difference	5,591	4,167	523	$\mathbf{2 5 , 5 0 0}$
Table 17				

If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{34}$ from the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary

Average	
Maximum	$\mathbf{4 , 4 0 3}$
Minimum	$\mathbf{2 , 4 1 2}$
Difference	$\mathbf{4 , 2 6 2}$

Table 18
The Thorium/Lead dates are up to twelve billion years older. The so called true age is just a guess.

Sr Isotopic Composition Of Afar Volcanics

According to the article ${ }^{35}$ this specimen [basalts from the Afar depression in Ethiopia] was dated in 1977 by scientists from Italy and France. The article states that the formation is of the late Quaternary period and thus very young. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{36}$ from the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary	
Average	$\mathbf{1 8 3}$
Maximum	$\mathbf{2 , 2 6 0}$
Minimum	$\mathbf{- 1 0 8}$
Difference	$\mathbf{2 , 3 6 8}$

Table 19
As far as the rocks being of a Quaternary age, the dates just don't line up.

Orogenic Lherzolite Complexes

According to the article ${ }^{37}$ this specimen from Gibraltar was dated in 1979 by scientists from France. According to the article ${ }^{38}$ the maximum age of the samples is 103 million years. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{39}$ from the two different tables in the article [Tables 2 and 3] through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary		
Summary	Table 2	Table 3
Average	$-52,203$	$-29,099$
Maximum	$-2,229$	$-1,258$
Minimum	$-\mathbf{- 1 3 5 , 1 4 0}$	$-102,498$
Difference	132,911	101,240
Table 20		

The dates are light years different from what the essay claims. They are just absurd.

Isotopic Geochemistry ($\mathbf{O s}, \mathbf{S r}, \mathbf{P b}$)

According to the article ${ }^{40}$ this specimen [the Golda Zuelva and Mboutou anorogenic complexes, North Cameroun] was dated in 1982 by scientists from France. According to the article ${ }^{40}$ the maximum age of the sample is 66 million years. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{41}$ from the two different tables in the article [Tables 1and 2] through Microsoft Excel we get the following values respectively:

Age Dating Summary

	Age Dating Summary			
Dating	87Rb/86Sr	87Rb/86Sr	Pb207/Pb206	
Summary	Age	Age	Age	
Average	321	57	4,982	
Maximum	1,635	141	5,080	
Minimum	52	0	4,932	
Difference	1,687	141	10,012	
Table 21				

If we run the $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ isotope ratios ${ }^{42}$ from the article [Table 3] through Microsoft Excel we get the following values respectively:

Lead Isotope Ages	
Age	Age
$\mathbf{5 , 0 8 0}$	$\mathbf{4 , 9 6 4}$
$\mathbf{5 , 0 4 8}$	$\mathbf{4 , 9 5 8}$
4,990	4,957
4,984	4,938
4,980	4,932
4,975	
Table 22	

The so called true age is just a guess.

Cretaceous-Tertiary Boundary Sediments

According to the article ${ }^{43}$ this specimen [from the Barranco del Gredero, Caravaca, Spain] was dated in 1983 by scientists from University of California, Los Angeles, the United States Geological Survey, and the Geological Institute, University of Amsterdam. According to the article ${ }^{44}$ the maximum age of the sample is 65 million years. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{44}$ from the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary	
Average	$\mathbf{7 4 0}$
Maximum	$\mathbf{5 , 1 5 7}$
Minimum	$\mathbf{- 2 6 6}$
Difference	5,423
Table 23	

Out of the 16 dates derived from isotopic ratios, ten were over 100 million years old. Two were over 4 billion years old. One was negative 266 million years old. How can a rock that formed in the past have a negative age! The choice of 65 million years is just a guess.

Correlated N D, Sr And Pb Isotope Variation

According to the article ${ }^{\overline{45}}$ this specimen [Walvis Ridge, Walvis Bay] was dated in 1982 by scientists from the Massachusetts Institute of Technology, and the Department of Geochemistry, University of Cape Town, South Africa. According to the article ${ }^{45}$ the age of the sample is 70 million years. If we run the various isotope ratios ${ }^{46}$ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary

Summary	Pb207/Pb206	147Sm/144Nd	87Rb/86Sr
Average	5,033	70	$\mathbf{6 4}$
Maximum	5,061	70	93
Minimum	5,004	69	0
Difference	57	140	93

A Depleted Mantle Source For Kimberlites

According to the article ${ }^{47}$ this specimen [kimberlites from Zaire] was dated in 1984 by scientists from Belgium. According to the article ${ }^{48}$ the age of the samples is 70 million years. If we run the various isotope ratios ${ }^{49}$ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary

Age Dating Summary				
Summary	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{8 7 R b} / 86 \mathrm{Sr}$	$\mathbf{1 4 7 S m} / \mathbf{1 4 4 N d}$
Average	4,977	4,810	86	$\mathbf{7 2}$
Maximum	$\mathbf{5 , 0 1 7}$	$\mathbf{1 0 , 8 7 0}$	$\mathbf{1 4 6}$	$\mathbf{8 0}$
Minimum	4,909	$\mathbf{1 , 3 9 1}$	$\mathbf{5 0}$	$\mathbf{6 3}$
Difference	$\mathbf{1 0 8}$	$\mathbf{9 , 4 7 8}$	$\mathbf{1 9 6}$	$\mathbf{1 7}$

Table 25

The $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ maximum age is 34 times older than the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ maximum age. The $206 \mathrm{~Pb} / 238 \mathrm{U}$ maximum age is 74 times older than the $147 \mathrm{Sm} / 144 \mathrm{Nd}$ maximum age. There is a 10.8 billion year difference between the oldest and youngest age attained.

Sm-Nd Isotopic Systematics

According to the article ${ }^{\mathbf{5 0}}$ this specimen [Enderby Land, East Antarctic] was dated in 1984 by scientists from the Australian National University, Canberra, and the Bureau of Mineral Resources, Canberra. According to the article ${ }^{50}$ the age of the sample is 3,000 million years. If we run the $\mathrm{Rb} / \mathrm{Sr}$ isotope ratios ${ }^{51}$ from the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary

Average	$-\mathbf{8 7 3}$
Maximum	$\mathbf{3 , 4 8 4}$
Minimum	$-\mathbf{- 2 5 , 1 2 1}$
Difference	$\mathbf{2 8 , 6 0 5}$

Table 26
There is almost a 30 billion year difference between the oldest and youngest dates.

Strontium, Neodymium And Lead Compositions

According to the article ${ }^{52}$ this specimen [Snake River Plain, Idaho] was dated in 1985 by scientists from the Geology Department, Rice University, Houston, Texas, the Earth Sciences Department, Open University, England and the Geology Department, Ricks College, Idaho. According to the article ${ }^{52}$ the age of the sample is 3.4 billion years. If we run the various isotope ratios ${ }^{53}$ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary

Summary	Pb207/Pb206	Pb207/Pb206	87Rb/86Sr
Average	$\mathbf{5 , 1 4 3}$	$\mathbf{5 , 1 3 8}$	$\mathbf{4 0 , 0 5 2}$
Maximum	$\mathbf{5 , 3 6 2}$	$\mathbf{5 , 3 1 4}$	$\mathbf{2 0 5 , 0 9 3}$
Minimum	4,698	4,940	1,443
Difference	664	374	$\mathbf{4}$ 203,650
Table 27			

The Lead isotope ratios from two different tables give dates 200 billion years younger than the $\mathrm{Rb} / \mathrm{Sr}$ isotope ratios. The Average age of the $\mathrm{Rb} / \mathrm{Sr}$ isotope ratios is 40 billion years. Below we can see some of the maximum ages and how stupid they are.
$\underline{\text { 87Rb/86Sr, Maximum Ages }}$

Age	Age
Million Years	Million Years
205,093	11,974
189,521	11,908
188,777	9,960
95,450	9,101
52,643	$\mathbf{7 , 1 2 4}$
13,119	$\mathbf{6 , 0 2 2}$
12,220	5,089
Table 28	

Trace Element And Sr And Nd Isotope

According to the article ${ }^{54}$ this specimen [West Germany] was dated in 1986 by scientists from Germany and California. According to the article ${ }^{54}$ the age of the samples is 2 billion years. If we run the various isotope ratios ${ }^{55}$ from the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary	
Average	$\mathbf{4 1 , 5 7 3}$
Maximum	$\mathbf{1 7 5 , 2 8 9}$
Minimum	$\mathbf{- 3 0 , 7 3 4}$
Difference	$\mathbf{2 0 6 , 0 2 2}$

Table 29
Many of the $\mathrm{Rb} / \mathrm{Sr}$ isotopic ratios would not produce proper ages. Those that did gave absurd values. Below are some dates taken from another table ${ }^{56}$ in the original article.
$\underline{\mathrm{Rb} / \mathbf{S r} \text { and } \mathrm{Sm} / \mathbf{N d} \text { Age Dating Summary }}$

TABLE 5	Sm-Nd	Rb-Sr
Sample	Age	Age
Ib/K1	2,090	2,210
Ib/8	2,900	1,790
D1	1,450	1,660
Ib/5	1,100	1,430
D45	1,630	530
D58	$\mathbf{3 , 2 0 0}$	1,930
Table 30		

The Southeast Australian Lithosphere Mantle

According to the article ${ }^{58}$ this specimen was dated in 1987 by scientists from The Australian National University. According to the article ${ }^{58}$ the age of the samples is 1.5 billion years. If we run the various isotope ratios ${ }^{59}$ from two different tables in the article through Microsoft Excel we get the following values respectively:
Rb/Sr Age Dating Summary

Average	1,905	42,639	
Maximum	11,657	218,042	
Minimum	134	$-15,716$	
Difference	11,523	233,758	
Table 31			

Below we can see the maximum ages obtained from the second table. The oldest age is 18 times older than the Big Bang explosion. It is sixty two times older than the so called age of the Earth.

87Rb/86Sr, Maximum Ages

Age	
218,042	Age
$\mathbf{6 4 , 7 7 0}$	$\mathbf{4 5 , 2 0 7}$
54,457	26,113
48,074	17,246
45,734	11,813

Table 32

Strontium, Neodymium and Lead Isotopic

According to the article ${ }^{60}$ this specimen was dated in 1988 by scientists from the Department of Terrestrial Magnetism. Carnegie Institution of Washington. Throughout the article the author admits that the dates are contradicting and unreliable: "For sample 7541. the apatite eclogite, the range observed in both $\mathrm{Rh} / \mathrm{Sr}$ and $\mathrm{Sm} / \mathrm{Nd}$ for the whole-rock and mineral separates is quite small resulting in very imprecise "ages" of 400 Ma for $\mathrm{Rb}-\mathrm{Sr}$ and 1110 Ma for $\mathrm{Sm}-\mathrm{Nd}$." ${ }^{61}$ If we run the Lead isotope ratios ${ }^{62}$ from the article through Microsoft Excel we get the following values respectively:

Pb 207/206 Age Dating Summary

Age	Age
$\mathbf{4 , 9 3 3}$	$\mathbf{4 , 9 2 8}$
4,961	$\mathbf{4 , 9 5 6}$
$\mathbf{4 , 9 5 2}$	$\mathbf{4 , 9 4 7}$
$\mathbf{4 , 9 5 2}$	$\mathbf{4 , 9 5 7}$
$\mathbf{4 , 9 4 2}$	$\mathbf{4 , 9 2 7}$
$\mathbf{4 , 9 7 8}$	$\mathbf{4 , 9 5 2}$
$\mathbf{4 , 9 4 0}$	$\mathbf{4 , 9 5 4}$
$\mathbf{4 , 9 4 7}$	

Table 33

Sr, Nd, and Os Isotope Geochemistry

According to the article ${ }^{63}$ this specimen [Camp Creek area, Arizona] was dated in 1987 by scientists from The University of Tennessee, the University of Michigan, the University of California, Leeds University, and the University of Chicago. According to the article ${ }^{64}$ the age of the samples is 120 million years. If we run the various isotope ratios ${ }^{65}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

Rb/Sr and $\mathrm{Sm} / \mathbf{N d}$ Age Dating Summary

Summary	87Rb/86Sr	87Rb/86Sr	147Sm/144Nd	147Sm/144Nd
Average	310	103	120	159
Maximum	1,092	207	123	400
Minimum	0	0	120	119
Difference	1,092	207	3	281

Table 34
The author's choice of 120 million years is just a guess.

Pb, Nd and Sr Isotopic Geochemistry

According to the article ${ }^{66}$ this specimen [Bellsbank kimberlite, South Africa] was dated in 1991 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article ${ }^{67}$ the age of the samples is just 1 million years. If we run the various isotope ratios ${ }^{68}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	$\mathbf{5 , 0 5 7}$	$\mathbf{5 , 0 9 2}$	$\mathbf{1 0 , 1 8 2}$	$\mathbf{- 1 , 5 0 2}$
Maximum	$\mathbf{5 , 1 2 0}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{0}$
Minimum	$\mathbf{5 , 0 0 2}$	0	0	$\mathbf{- 3 , 5 9 3}$
Difference	$\mathbf{1 1 8}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{3 , 5 9 3}$
Table 35				

In tables 36 to 39 we can see some of the astounding spread of dates [million of years]. The oldest date is over 17 billion years old. The youngest is less than negative 3.5 billion years. The difference between the two is over 20 billion years. According to the article the true age of the rock is just one million years old!

208Pb/232Th, Maximum Ages

Age	Age	Age	Age
17,171	13,322	9,737	$\mathbf{7 , 9 6 8}$
15,343	13,202	9,707	$\mathbf{7 , 8 3 0}$
15,299	13,001	$\mathbf{9 , 0 4 9}$	$\mathbf{7 , 2 5 0}$
15,136	11,119	$\mathbf{8 , 4 2 0}$	$\mathbf{6 , 9 7 2}$
15,054	10,873	$\mathbf{8 , 4 1 9}$	$\mathbf{6 , 6 2 8}$
13,476	10,758	$\mathbf{8 , 3 6 8}$	$\mathbf{6 , 5 7 7}$

Table 36
$\underline{\underline{206 P b} / 238 U}$, Maximum Ages

Age	Age	Age
$\mathbf{8 , 5 8 4}$	$\mathbf{6 , 6 5 6}$	$\mathbf{5 , 5 7 6}$
$\mathbf{7 , 9 7 5}$	$\mathbf{6 , 6 5 4}$	$\mathbf{5 , 5 2 0}$
$\mathbf{7 , 3 1 4}$	$\mathbf{6 , 5 1 8}$	$\mathbf{5 , 2 8 5}$
$\mathbf{7 , 1 8 4}$	$\mathbf{6 , 4 4 8}$	$\mathbf{5 , 1 5 9}$
$\mathbf{6 , 8 6 1}$	$\mathbf{5 , 7 5 8}$	$\mathbf{5 , 0 9 9}$
Table 37		

Pb 207/206, Maximum Ages

Age	Age	Age	Age
$\mathbf{5 , 1 2 0}$	$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 4 9}$
$\mathbf{5 , 1 0 9}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 9}$	$\mathbf{5 , 0 4 5}$
$\mathbf{5 , 0 9 7}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 1}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 7 7}$	$\mathbf{5 , 0 6 5}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 2}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 3 3}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 2 2}$

Table 38
87Rb/86Sr, Minimum Ages

Age	Age	Age	Age
$-3,593$	$-2,981$	$-1,917$	$-1,323$
$-3,231$	$-2,725$	$-1,611$	$-1,245$
$-3,089$	$-2,050$	$-1,499$	$-1,229$
$-3,067$	$-1,926$	$-1,370$	$-1,194$

Table 39

Sr, Nd, and Pb isotopes

According to the article ${ }^{68}$ this specimen [eastern China] was dated in 1992 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article: "Observed high $\mathrm{Th} / \mathrm{U}, \mathrm{Rb} / \mathrm{Sr}, 87 \mathrm{Sr} / 86 \mathrm{Sr}$ and Delta 208 , low $\mathrm{Sm} / \mathrm{Nd}$ ratios, and a large negative Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga , support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component." ${ }^{68}$ If we run the various isotope ratios ${ }^{69}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	14,198	7,366	5,014
Maximum	94,396	22,201	5,077
Minimum	79	1,117	4,945
Difference	94,317	21,083	131
Table 40			

If the true age is 2.9 billion years why so much discordance? In tables 41 to 43 we can see some of the astounding spread of dates [million of years]. The oldest date is over 94 billion years old. The youngest is 79 million years. The difference between the two is over 94 billion years. The oldest date is 1,194 times older than the youngest. According to the article the true age of the rock is 2.9 billion years old!

208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{9 4 , 3 9 6}$	$\mathbf{3 9 , 2 6 7}$	$\mathbf{1 0 , 5 9 5}$	$\mathbf{8 , 1 7 1}$
$\mathbf{9 0 , 6 8 3}$	$\mathbf{2 6 , 2 6 6}$	$\mathbf{1 0 , 2 8 4}$	$\mathbf{7 , 7 8 9}$
$\mathbf{7 4 , 6 3 9}$	$\mathbf{1 8 , 3 3 4}$	$\mathbf{9 , 3 2 8}$	$\mathbf{7 , 6 3 8}$
$\mathbf{5 8 , 1 5 3}$	$\mathbf{1 6 , 3 5 7}$	$\mathbf{8 , 8 2 1}$	$\mathbf{7 , 3 7 5}$
$\mathbf{5 5 , 3 2 4}$	$\mathbf{1 4 , 2 5 0}$	$\mathbf{8 , 7 7 1}$	$\mathbf{7 , 3 1 7}$
$\mathbf{4 5 , 2 4 2}$	$\mathbf{1 1 , 2 1 5}$	$\mathbf{8 , 4 0 3}$	$\mathbf{5 , 7 5 9}$

Table 41
206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{2 2 , 2 0 1}$	$\mathbf{9 , 8 7 8}$	$\mathbf{7 , 3 4 8}$	$\mathbf{5 , 7 4 6}$
$\mathbf{2 1 , 8 1 3}$	$\mathbf{9 , 6 5 6}$	$\mathbf{7 , 3 3 5}$	$\mathbf{5 , 7 0 0}$
$\mathbf{1 9 , 3 2 0}$	$\mathbf{9 , 0 5 4}$	$\mathbf{7 , 2 4 9}$	$\mathbf{5 , 2 1 8}$
$\mathbf{1 6 , 6 5 6}$	$\mathbf{8 , 2 4 2}$	$\mathbf{7 , 2 0 2}$	$\mathbf{5 , 2 0 1}$
$\mathbf{1 6 , 2 0 0}$	$\mathbf{8 , 0 4 4}$	$\mathbf{7 , 0 1 9}$	$\mathbf{5 , 1 6 3}$
$\mathbf{1 4 , 7 4 8}$	$\mathbf{7 , 9 9 6}$	$\mathbf{6 , 9 2 3}$	$\mathbf{5 , 1 5 9}$
$\mathbf{1 3 , 6 0 7}$	$\mathbf{7 , 5 9 0}$	$\mathbf{6 , 8 4 8}$	$\mathbf{5 , 0 9 9}$
$\mathbf{1 1 , 2 5 6}$	$\mathbf{7 , 4 2 2}$	$\mathbf{6 , 2 9 2}$	$\mathbf{4 , 8 1 2}$

Table 42

Production of Jurassic Rhyolite

According to the article ${ }^{70}$ this specimen [Patagonia, South America] was dated in 1994 by scientists from the British Antarctic Survey, National University, Argentina. According to the article: "Primary magmas of andesitic composition were generated by partial melting of mafic" Grenvillian" lower crust, indentified by depleted-mantle model ages of 1150$1600 \mathrm{Ma} .{ }^{"}{ }^{70}$ If we run the various isotope ratios ${ }^{71}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

$\mathbf{R b} / \mathbf{S r}$ Age Dating Summary	
Average	$\mathbf{4 3 2}$
Maximum	$\mathbf{1 7 , 3 8 7}$
Minimum	$\mathbf{- 4 , 6 3 3}$
Difference	$\mathbf{2 2 , 0 2 0}$

Table 43

Evolution of Reunion Hotspot Mantle

According to the article ${ }^{72}$ this specimen [Reunion and Mauritius Islands] was dated in 1995 by scientists from the University of Hawaii. According to the article: "Whole-rock powder obtained from P. Krishnamurthy. (87Sr/86 Sr), and $\mathrm{em}(\mathrm{T})$ are age-corrected values; $T=66 \mathrm{Ma}$ for the drill hole lavas." ${ }^{73}$ If we run the various isotope ratios ${ }^{74}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Table	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	$\mathbf{8 , 0 7 9}$	$\mathbf{4 , 4 4 9}$	$\mathbf{4 , 9 7 6}$
Maximum	$\mathbf{1 3 , 2 8 7}$	$\mathbf{6 , 2 8 5}$	$\mathbf{5 , 0 1 6}$
Minimum	$\mathbf{5 , 6 4 1}$	$\mathbf{3 , 0 1 0}$	$\mathbf{4 , 9 5 3}$
Difference	$\mathbf{7 , 6 4 6}$	$\mathbf{3 , 2 7 6}$	$\mathbf{6 3}$
Table 44			

Table 44
$\underline{\text { 208Pb/232Th, Maximum Ages }}$

Age	Age	Age	Age
13,287	$\mathbf{8 , 7 2 5}$	$\mathbf{7 , 3 6 3}$	$\mathbf{6 , 5 4 0}$
11,832	$\mathbf{8 , 6 0 9}$	7,362	$\mathbf{6 , 4 7 9}$
11,017	$\mathbf{7 , 5 4 1}$	$\mathbf{7 , 0 8 0}$	$\mathbf{6 , 3 2 3}$
10,357	7,517	$\mathbf{7 , 0 1 7}$	$\mathbf{5 , 6 6 0}$
9,101	$\mathbf{7 , 4 4 6}$	$\mathbf{6 , 6 7 9}$	$\mathbf{5 , 6 4 1}$

Table 45
206Pb/238U, Maximum Ages

206Pb/238U, Maximum Ages			
Age	Age	Age	Age
$\mathbf{6 , 2 8 5}$	$\mathbf{4 , 9 0 3}$	$\mathbf{4 , 1 4 1}$	$\mathbf{3 , 8 7 5}$
$\mathbf{6 , 1 6 5}$	$\mathbf{4 , 6 3 3}$	$\mathbf{4 , 1 3 3}$	$\mathbf{3 , 6 4 7}$
$\mathbf{5 , 7 6 7}$	$\mathbf{4 , 3 4 2}$	$\mathbf{4 , 0 1 1}$	$\mathbf{3 , 5 4 8}$
$\mathbf{5 , 5 5 3}$	$\mathbf{4 , 2 5 8}$	$\mathbf{4 , 0 0 1}$	$\mathbf{3 , 3 6 9}$
$\mathbf{5 , 1 5 2}$	$\mathbf{4 , 2 2 0}$	$\mathbf{3 , 9 7 3}$	$\mathbf{3 , 0 1 0}$

Table 46

According to dating charts in the article, the true age is just 66 million years old! ${ }^{74}$

An Extremely Low U/Pb Source

According to the article ${ }^{75}$ this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The $\mathrm{Pb}-\mathrm{Pb}$ internal isochron obtained for acid leached residues of separated mineral fractions yields an age of $3940 \pm 28 \mathrm{Ma}$, which is similar to the $\mathrm{U}-\mathrm{Pb}(3850 \pm 150 \mathrm{Ma})$ and $\mathrm{Th}-\mathrm{Pb}(3820 \pm 290$ Ma) internal isochron ages. The $\mathrm{Sm}-\mathrm{Nd}$ data for the mineral separates yield an internal isochron age of $3871 \pm 57 \mathrm{Ma}$ and an initial $143 \mathrm{Nd} /\left[44 \mathrm{Nd}\right.$ value of 0.50797 ± 10. The Rb-Sr data yield an internal isochron age of $3840 \pm 32 \mathrm{Ma}$." ${ }^{75}$
$\mathbf{R b} / \mathbf{S r}$ Age Dating Summary

Average	$\mathbf{3 , 6 1 9}$
Maximum	$\mathbf{5 , 3 8 5}$
Minimum	$\mathbf{7 2 1}$
Difference	$\mathbf{4 , 6 6 4}$

Table 47

Uranium Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U
Summaries	Age	Age	Age	Age
Average	4,673	$\mathbf{8 , 0 3 5}$	$\mathbf{1 0 , 1 4 8}$	4,546
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 6 , 9 2 3}$	$\mathbf{6 5 , 2 8 6}$	$\mathbf{8 , 1 2 8}$
Minimum	$\mathbf{3 , 9 6 1}$	$\mathbf{1 , 4 7 7}$	$\mathbf{2 , 5 4 2}$	$\mathbf{2 , 7 8 4}$
Difference	$\mathbf{1 , 0 5 7}$	$\mathbf{5 5 , 4 4 5}$	$\mathbf{6 2 , 7 4 4}$	$\mathbf{5 , 3 4 4}$

Table 48
The article claims that the $\mathrm{Rb} / \mathrm{Sr}$ age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ${ }^{76}$ so stupid? Or are they right and the $\mathrm{Rb} / \mathrm{Sr}$ is wrong?
208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{6 5 , 2 8 6}$	$\mathbf{1 4 , 4 3 0}$	$\mathbf{9 , 0 9 4}$	$\mathbf{5 , 4 0 1}$
$\mathbf{3 3 , 8 9 8}$	$\mathbf{1 4 , 4 1 0}$	$\mathbf{6 , 5 2 0}$	$\mathbf{5 , 3 9 6}$
25,013	$\mathbf{1 3 , 1 0 7}$	$\mathbf{6 , 1 6 6}$	$\mathbf{5 , 3 6 5}$
$\mathbf{2 2 , 1 7 8}$	$\mathbf{1 2 , 7 3 8}$	$\mathbf{6 , 1 2 1}$	$\mathbf{5 , 0 9 8}$
21,204	$\mathbf{1 1 , 6 4 1}$	$\mathbf{5 , 6 7 1}$	$\mathbf{5 , 0 3 5}$
$\mathbf{1 7 , 6 1 1}$	$\mathbf{1 1 , 1 7 4}$	$\mathbf{5 , 4 0 8}$	$\mathbf{4 , 6 7 8}$

Table 49
206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{5 6 , 9 2 3}$	$\mathbf{1 0 , 8 9 5}$	$\mathbf{6 , 7 6 4}$	$\mathbf{5 , 7 7 7}$
27,313	$\mathbf{1 0 , 2 7 8}$	$\mathbf{6 , 6 7 0}$	$\mathbf{5 , 6 2 5}$
17,873	$\mathbf{9 , 6 5 3}$	$\mathbf{6 , 4 4 9}$	$\mathbf{5 , 6 0 2}$
13,680	$\mathbf{8 , 0 0 9}$	$\mathbf{6 , 4 3 6}$	$\mathbf{5 , 2 7 8}$
13,623	$\mathbf{7 , 3 9 5}$	$\mathbf{6 , 0 7 0}$	$\mathbf{5 , 1 4 7}$

Table 50

The 72 Ma Geochemical Evolution

According to the article ${ }^{77}$ this specimen [Madeira Archipelago] was dated in 2000 by scientists from Germany. The average Lead date is 705 times older than the average Rubidium date. The true age is claimed to be 430 million years old.
${ }^{77}$ If we run the various isotope ratios ${ }^{78}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary

Table	207Pb/206Pb	87Rb/86Sr	147Sm/144Nd
Summaries	Age	Age	Age
Average	4,938	7	10
Maximum	5,199	55	$\mathbf{1 6 4}$
Minimum	4,898	-4	0
Difference	$\mathbf{3 0 2}$	59	$\mathbf{1 6 4}$

Table 51
If the true age is 430 million years than none of the dating methods are even vaguely close. The oldest date is 731 times older than the youngest.

The Himalayan Collision Zone

According to the article ${ }^{79}$ this specimen [East Tibet] was dated in 2000 by scientists from Germany. As far as the age goes the author states: "Partial melting of the mantle source was most likely triggered by a Cenozoic asthenospheric mantle diapir related to Indian-Asian continent collision at $65-45 \mathrm{Ma}$. Rising and emplacement of carbonatitic magmas with coeval potassium-rich magmas took place in the tectonic regime of the transition from transpression to transtension at Eocene/Oligocene boundary in the EIACZ." ${ }^{80}$ He also states: "The initial "Nd values and $87 \mathrm{Sr} / 86 \mathrm{Sr}$ ratios were calculated at $t=35 \mathrm{Ma} .{ }^{081}$ If we run the various isotope ratios ${ }^{82}$ from two different tables in the article through Isoplot we get the following values respectively:

Pb 207/206, Dating Summary

Dating	207Pb/206Pb	87Rb/86Sr
Summary	Age	Age
Average	$\mathbf{5 , 0 1 5}$	0
Maximum	5,023	0
Minimum	4,976	0
Difference	47	0
Table 52		

If the specimen is of the Eocene era [Less than 100 million years old] how can the Lead/Lead dating produce such rubbish? If we run the $\mathrm{Rb} / \mathrm{Sr}$ ratios through Microsoft Excel we get zero ages!

Evidence for a Non Magmatic component

According to the article ${ }^{83}$ this specimen [Yukon, Canada] was dated in 2001 by Canadian scientists from the University of Alberta, and Dalhousie University, Halifax. According to Argon dating the age of the material is 70 million years. ${ }^{84}$ If we run the various isotope ratios ${ }^{85}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary		
Table	207Pb/206Pb	87Rb/86Sr
Summaries	Age	Age
Average	$\mathbf{4 , 9 5 5}$	71
Maximum	$\mathbf{5 , 2 1 4}$	101
Minimum	$\mathbf{4 , 9 1 8}$	$\mathbf{6 0}$
Difference	296	41
Table 53		

If we look at the average ages we see that there is a 7 thousand percent difference between them! If we compare the youngest and oldest dates we see that there is an 8,540 percent difference between them.

The Origin Of Geochemical Diversity

According to the article ${ }^{86}$ this specimen [lunar basalt] was dated in 2007 by scientists from New Mexico University. According to $\mathrm{Rb} / \mathrm{Sr}$ isochron diagram the age of the material is 3.678 billion years. ${ }^{87}$ If we run the various isotope ratios ${ }^{88}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary

Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	$\mathbf{4 , 6 3 5}$	$\mathbf{6 , 5 6 5}$	$\mathbf{4 , 6 7 2}$
Maximum	$\mathbf{5 , 1 1 1}$	$\mathbf{1 8 , 2 1 3}$	$\mathbf{7 , 0 9 4}$
Minimum	$\mathbf{4 , 0 2 8}$	$\mathbf{3 , 7 0 6}$	$\mathbf{3 , 4 7 6}$
Difference	$\mathbf{1 , 0 8 2}$	$\mathbf{1 4 , 5 0 6}$	$\mathbf{3 , 6 1 8}$

Table 54

The dating methods all disagree with each other. There is a wide spread of dates which are just random.

Mechanisms For Incompatible-Element Enrichment

According to the article ${ }^{89}$ this specimen [meteorite Northwest Africa] was dated in 2009 by scientists from Lawrence Livermore National Laboratory, University of New Mexico, the University of California, Berkeley, and Arizona State University. The author states: "Rubidium-Strontium isotopic analyses yield an age of $2,947 \pm 16 \mathrm{Ma}$ " If we run the various isotope ratios ${ }^{90}$ from a table in the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary

Average	$\mathbf{5 , 4 8 3}$
Maximum	$\mathbf{1 3 , 4 9 7}$
Minimum	$\mathbf{1 , 9 1 7}$
Difference	$\mathbf{1 1 , 5 7 9}$

Table 55
Out of the eleven isotope ratios, two returned dates over ten billion years old.

Constraints On Martian Differentiation Processes

According to the article ${ }^{91}$ this specimen [Martian meteorite] was dated in 1997 by scientists from the NASA Johnson Space Centre, Houston, Texas, the University of Tennessee, and Lockheed Martin, Houston, Texas. According to the article ${ }^{91}$ the age range is: "The neodymium isotopic systematics of QUE 94201 are not consistent with significant melting between 4.525 Ga and 327 Ma ." If we run the various isotope ratios ${ }^{92}$ from two different tables [1 and 4] in the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary		
Summary	Table 1	Table 4
Average	618	$-34,834$
Maximum	1,765	4,642
Minimum	-98	$-118,922$
Difference	$\mathbf{1 , 6 6 8}$	123,564

Table 56
Instead of having a 4.2 billion year spread we have a 123 billion year spread of dates. Both tables in the article give dates way off the so called true age.

Geochemistry of the Volcan de l'Androy

According to the article ${ }^{93}$ this specimen from the Androy massif in south eastern Madagascar was dated in 2008 by scientists from the University Of Hawaii. According to the article Argon and Rubidium dating defined the so called true ages as: "The R2 rhyolites define a whole-rock $\mathrm{Rb} / \mathrm{Sr}$ isochron of 84 Ma , the same, within error, as an $40 \mathrm{Ar} / 39 \mathrm{Ar}$ sanidine age reported by earlier workers." ${ }^{93}$ If we run the various isotope ratios ${ }^{94}$ from a table in the article through Isoplot we get the following values respectively:

Pb 207/206, Dating Summary

Average	$\mathbf{5 , 0 0 4}$	$\mathbf{4 , 9 9 9}$
Maximum	$\mathbf{5 , 0 4 8}$	$\mathbf{5 , 0 2 9}$
Minimum	$\mathbf{4 , 9 8 0}$	$\mathbf{4 , 9 8 4}$
Difference	$\mathbf{6 7}$	$\mathbf{1 8}$
Table 57		

The Lead dating give ages that are sixty times older than the $\mathrm{Rb} / \mathrm{Sr}$ dates.

Continental Lithospheric Contribution

According to the article ${ }^{95}$ this specimen from southern Portugal was dated in 1997 by scientists from France. According to the article Argon and Rubidium dating defined the so called true ages as: "The age of the intrusion and crystallization of the alkaline rocks of the Serra de Monchique is 72 Ma , based on $\mathrm{Rb} / \mathrm{Sr}$ and K / Ar dating." ${ }^{96}$ If we run the various isotope ratios ${ }^{97}$ from a table in the article through Isoplot we get the following values respectively:

Age Dating Summary

Table	207Pb/206Pb	208Pb/232Th	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	4,920	6,126	4,539	$\mathbf{- 6 2}$
Maximum	4,949	10,084	7,723	$\mathbf{- 5 0}$
Minimum	4,894	2,616	2,306	$-\mathbf{- 7 5}$
Difference	55	7,467	5,417	25
Table 58				

The date of 72 million years is just a guess. The Thorium/Lead method gives dates 140 times older. The Uranium/Lead methods give dates 107 times older. Below we can see the maximum ages [million years] calculated form isotope ratios. Compare these with the so called true age!

Maximum Ages	
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	206Pb/238U
10,084	7,723
9,320	7,060
8,101	6,507
7,502	6,387
7,080	6,206
6,891	5,143
6,655	4,734
6,313	4,186
5,830	3,768
5,755	3,761
5,029	3,487
Table 59	

Garnet Granulite Xenoliths

According to the article ${ }^{98}$ this specimen from the northern Baltic shield was dated in 2001 by scientists from England, USA and Russia. According to the article Argon dating defined the so called true ages as 400 to 2200 million years. ${ }^{99}$ If we run the various isotope ratios ${ }^{\mathbf{1 0 0}}$ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary		
Table	206Pb/238U	207Pb/206Pb
Summaries	Age	Age
Average	$\mathbf{1 7 , 0 0 2}$	$\mathbf{5 , 0 4 6}$
Maximum	$\mathbf{4 0 , 0 5 9}$	$\mathbf{5 , 2 9 5}$
Minimum	$\mathbf{1 , 6 0 8}$	$\mathbf{3 , 9 0 8}$
Difference	$\mathbf{3 8 , 4 5 2}$	$\mathbf{1 , 3 8 7}$
Table 60		

Below are the maximum ages calculated from isotope ratios in tables 4 and 5 in the article:

206Pb/238U	206Pb/238U		206Pb/238U		206Pb/238U
Age	Age		Age		Age
40,059	28,118		21,092		13,724
35,742	27,127		16,026		13,404
34,459	25,884		14,371		12,747
33,978	21,209		14,272		10,956
Table 61					
206Pb/238U, Maximum Ages					
206Pb/238U		206Pb/238U		206Pb/238U	
Age		Age		Age	
20,648		13,724		10,956	956
17,527		13,404		10,049	049
16,336		12,622		6,792	92
15,626		12,165		6,265	65
15,018		11,432		5,865	86
Table 62					

If we run more ratios form and online supplement we get ages uniformly 5 billion years old. Compare these with the so called true age!

The Isotope and Trace Element Budget

According to the article ${ }^{102}$ this specimen from the Devil River Arc System, New Zealand was dated in 2000 by scientists from Germany. According to the article, the so called true ages is Cambrian. ${ }^{102}$ If we run the various isotope ratios ${ }^{103}$ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary

Age Dating Summary			
Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	$\mathbf{4 , 9 7 0}$	$\mathbf{1 9 , 1 4 3}$	500
Maximum	$\mathbf{4 , 9 8 6}$	21,761	501
Minimum	$\mathbf{4 , 9 3 2}$	$\mathbf{1 5 , 1 5 0}$	$\mathbf{4 9 5}$
Difference	$\mathbf{5 4}$	$\mathbf{6 , 6 1 1}$	$\mathbf{6}$

Table 63

The Lead/Lead dates are ten times too old and the Uranium/Lead dates are 40 times too old!

Fluid Flow and Diffusion

According to the article ${ }^{\mathbf{1 0 4}}$ this specimen from the Waterville Formation in south-central Maine, USA, was dated in 1997 by scientists from England and USA. According to the article, the so called true age is: "the $376 \pm 6 \mathrm{Ma} \mathrm{Rb}-\mathrm{Sr}$ whole-rock age of the syn-metamorphic Hallowell pluton." ${ }^{104}$ According to isochron diagrams in the article ${ }^{105}$ the model age is between 342 to 391 million years. The article has an age range diagram ${ }^{106}$ which claims that the maximum age is 425 million years. If we run the various isotope ratios ${ }^{107}$ from table 4 in the article through Isoplot we get the following values respectively:

Rb/Sr Age Dating Summary	
Average	$\mathbf{7 4 6}$
Maximum	2,063
Minimum	316
Difference	1,747
Table 64	

Out of the 150 isotopic ratios in the essay, 134 gave ages greater than the so called maximum age limit. Twenty six gave ages that were more than twice the maximum limit.

Temporal Evolution of the Lithospheric Mantle

According to the article ${ }^{\mathbf{1 0 8}}$ this specimen from the Eastern North China Craton was dated in 2009 by scientists from China, USA and Australia. Various tables ${ }^{109}$ in the essay have either calculated dates or ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 32 billion year range.

Age Dating Summary

Age Dating Summary				
Table	147Sm/144Nd	176Lu/176Hf	187Re/188Os	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	291	-220	1,048	9
Maximum	$\mathbf{3 , 0 7 9}$	$\mathbf{4 , 1 9 2}$	20,710	22
Minimum	$-3,742$	$-9,369$	$-11,060$	0
Difference	6,821	13,561	31,770	22

Table 65

Petrogenesis and Origins of Mid-Cretaceous

According to the article ${ }^{\mathbf{1 1 0}}$ this specimen from the Intraplate Volcanism in Marlborough, New Zealand was dated in 2010 by scientists from New Zealand. According to the essay: "the intraplate basalts in New Zealand that have been erupted intermittently over the last c. $100 \mathrm{Myr}{ }^{1111}$ Various tables ${ }^{112}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 10 billion year range. None of the Lead based dating methods even come vaguely close to a Cretaceous age.

Age Dating Summary

Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U
Summaries	Age	Age	Age	Age	Age
Average	$\mathbf{4 , 8 7 6}$	$\mathbf{4 , 4 1 6}$	59	$\mathbf{6 , 3 3 3}$	$\mathbf{3 , 5 1 5}$
Maximum	$\mathbf{4 , 9 4 5}$	$\mathbf{5 , 1 5 9}$	$\mathbf{8 5}$	$\mathbf{1 0 , 7 1 6}$	$\mathbf{5 , 7 1 7}$
Minimum	$\mathbf{4 , 8 3 6}$	$\mathbf{4 , 0 8 8}$	$\mathbf{1 5}$	$\mathbf{4 , 7 8 5}$	$\mathbf{2 , 7 1 2}$
Difference	$\mathbf{1 0 9}$	$\mathbf{1 , 0 7 1}$	$\mathbf{7 0}$	$\mathbf{5 , 9 3 1}$	$\mathbf{3 , 0 0 5}$

Table 66

The Petrogenetic Association of Carbonatite

According to the article ${ }^{113}$ this specimen from the Spitskop Complex, South Africa was dated in 1999 by scientists from South Africa. According to the essay: "The 1,341 Ma old Spitskop Complex in South Africa is one of a series of intrusions of alkaline affinity." ${ }^{113}$ Various tables ${ }^{114}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other.

Age Dating Summary		
Dating	87Rb/86Sr	207Pb/206Pb
Summary	Age	Age
Average	$\mathbf{- 6 , 0 1 2}$	$\mathbf{5 , 0 5 6}$
Maximum	$\mathbf{2 , 7 6 2}$	5,126
Minimum	$-\mathbf{6 6 , 4 9 9}$	$\mathbf{4 , 6 4 9}$
Difference	$\mathbf{6 9 , 2 6 2}$	477
Table 67		

Nine of the twenty six $\mathrm{Rb} / \mathrm{Sr}$ dates are over three billion years in error. Seven are over eleven billion years in error. The thirteen Lead 206/207 dates are all totally way off.

Geochemistry Of The Jurassic Oceanic Crust

According to the article ${ }^{15}$ this specimen from the Canary Islands was dated in 1998 by scientists from Germany. According to the essay: "An Sm-Nd isochron gives an age of $178 \pm 17 \mathrm{Ma}$, which agrees with the age predicted from paleomagnetic data. ${ }^{1115}$ The article places the age in the late Cretaceous period. Various tables ${ }^{116}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 350 billion year range! None of the Lead or Rubidium based dating methods even come vaguely close to a Jurassic age.

Age Dating Summary		
Dating	87Rb/86Sr	207Pb/206Pb
Summary	Age	Age
Average	$\mathbf{- 1 4 9 , 4 8 8}$	$\mathbf{4 , 9 7 4}$
Maximum	$\mathbf{5 1 , 9 6 7}$	$\mathbf{5 , 0 2 4}$
Minimum	$\mathbf{- 2 9 9 , 3 4 6}$	$\mathbf{4 , 8 4 5}$
Difference	$\mathbf{3 5 1 , 3 1 3}$	$\mathbf{1 7 9}$
Table 68		

The Age Of Dar Al Gani 476

According to the article ${ }^{117}$ this Martian meteorite was dated in 2003 by scientists from the University of New Mexico, NASA Johnson Space Centre, Lockheed Engineering and Science Company. According to the essay: "In either case, the fact that the Martian meteorites define a whole rock $\mathrm{Rb}-\mathrm{Sr}$ isochron with an age of 4.5 Ga require these reservoirs to have formed near the time of planet formation." ${ }^{117}$ A table ${ }^{118}$ in the essay has isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with the assumed age. There is a spread of dates of almost 18 billion year range! None of the Rubidium based dating methods even come vaguely close to the so called true age.

Rb/Sr Age Dating Summary

Average	$\mathbf{- 9 , 3 9 8}$
Maximum	$\mathbf{- 2 , 1 4 2}$
Minimum	$\mathbf{- 2 0 , 0 0 4}$
Difference	$\mathbf{1 7 , 8 6 2}$

Table 69

Petrogenesis Of The Flood Basalts

According to the article ${ }^{119}$ this basalt form the Northern Kerguelen Archipelago was dated in 1998 by scientists from the Massachusetts Institute Of Technology, University of Brussels, Belgium and the San Diego State University. According to the essay: "The dominance of this isotopic signature in archipelago lavas for 30 my and its presence in $\sim 40 \mathrm{Ma}$ gabbros is consistent with the previous interpretation that these are isotopic characteristics of the Kerguelen Plume." 119 Various tables ${ }^{\mathbf{1 2 0}}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong
disagreement with each other. There is a spread of dates of over a 44 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary

Mt Rabouillere	Age	Age	Age	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$
Average	$\mathbf{2 1}$	$\mathbf{5 , 0 0 8}$	$\mathbf{4 , 9 0 3}$	$\mathbf{4 , 9 7 5}$	$\mathbf{6 , 1 4 2}$
Maximum	$\mathbf{3 0}$	$\mathbf{5 , 0 1 9}$	$\mathbf{5 , 3 5 5}$	$\mathbf{5 , 1 0 0}$	$\mathbf{7 , 7 8 8}$
Minimum	-7	$\mathbf{5 , 0 0 0}$	$\mathbf{4 , 3 0 5}$	$\mathbf{4 , 7 9 3}$	$\mathbf{2 , 7 9 9}$
Difference	$\mathbf{3 8}$	$\mathbf{2 0}$	$\mathbf{1 , 0 5 0}$	$\mathbf{3 0 7}$	$\mathbf{4 , 9 8 9}$

Table 70
Age Dating Summary

Mount Bureau Summary	Age	Age	Age	Age	Age
	87Rb/86Sr	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th
Average	27	5,006	5,924	5,161	$\mathbf{8 , 4 1 0}$
Maximum	30	5,020	23,366	$\mathbf{8 , 4 9 6}$	44,378
Minimum	24	4,994	3,335	4,454	$\mathbf{2 , 6 5 0}$
Difference	6	26	$\mathbf{2 0 , 0 3 1}$	$\mathbf{4 , 0 4 2}$	$\mathbf{4 1 , 7 2 8}$

Table 71

Nature Of The Source Regions

According to the article ${ }^{\mathbf{1 2 1}}$ this lava from southern Tibet was dated in 2004 by scientists from the Open University in Milton Keynes, the University of Bristol and Cardiff University. According to the essay: "Most samples are Miocene in age, ranging from 10 to 25 Ma in the south and 19Ma to the present day in northern Tibet" ${ }^{122}$ Various tables ${ }^{123}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over a 88 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary

Age Dating Summary				
North Tibet	208Pb/232Th	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	207Pb/206Pb	206Pb/238U
Summary	Million Years	Million Years	Million Years	Million Years
	11,420	$\mathbf{5 , 1 3 6}$	$4,980$	7,783
87Rb/86Sr	11,350	5,138	4,980	8,023
Model Age	13,475	$5,135$	4,987	8,305
13 Million Years	$11,504$	$5,140$	4,989	7,349
	$\mathbf{8 1 , 6 1 4}$	7,470	4,987	33,751
	88,294	7,471	4,991	33,742

Table 72

Age Dating Summary				
	208Pb/232Th	207Pb/235U	207Pb/206Pb	206Pb/238U
	Million Years	Million Years	Million Years	Million Years
	$\mathbf{1 1 , 1 0 2}$	$\mathbf{3 1 3}$	$\mathbf{4 , 9 8 2}$	$\mathbf{6 , 3 3 1}$
	$\mathbf{6 , 0 9 2}$	$\mathbf{9 4 6}$	$\mathbf{4 , 9 1 9}$	$\mathbf{5 , 7 9 9}$
87Rb/86Sr	$\mathbf{9 , 2 6 5}$	$\mathbf{2 6 6}$	$\mathbf{4 , 9 8 0}$	$\mathbf{6 , 6 8 2}$
Model Age	$\mathbf{4 , 8 2 6}$	238	$\mathbf{4 , 9 9 2}$	$\mathbf{4 , 0 8 6}$
13 Million Years	$\mathbf{8 , 2 0 5}$	294	$\mathbf{4 , 9 8 0}$	$\mathbf{5 , 5 6 7}$
	$\mathbf{2 5 , 0 1 5}$	447	$\mathbf{4 , 9 9 4}$	$\mathbf{1 3 , 3 2 8}$
	$\mathbf{3 3 , 1 9 1}$	482	$\mathbf{4 , 9 9 2}$	$\mathbf{1 5 , 0 5 3}$

Table 73

Generation Of Palaeocene Adakitic Andesites

According to the article ${ }^{124}$ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Palaeocene (c. $55-58 \mathrm{Ma}$) adakitic andesites from the Yanji area." ${ }^{\mathbf{1 2 4}}$ Numerous table and charts affirm this as the true age. ${ }^{125} \mathrm{~A}$ table ${ }^{126}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 10 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary						
Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U	207Pb/235U	
Summary	Age	Age	Age	Age	Age	
Average	51	5,022	$\mathbf{8 , 9 4 1}$	$\mathbf{8 , 7 5 4}$	$\mathbf{5 , 9 0 8}$	
Maximum	66	5,024	$\mathbf{1 0 , 5 1 8}$	$\mathbf{9 , 6 6 9}$	$\mathbf{6 , 0 5 2}$	
Minimum	40	5,020	7,800	$\mathbf{7 , 4 0 3}$	$\mathbf{5 , 6 4 1}$	
Difference	26	$\mathbf{3}$	$\mathbf{2 , 7 1 8}$	$\mathbf{2 , 2 6 6}$	411	

Table 74

Evidence For A Widespread Tethyan

According to the article ${ }^{127}$ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Here, we report age-corrected $\mathrm{Nd}-\mathrm{Pb}-\mathrm{Sr}$ isotope data for $100-350 \mathrm{Ma}$ basalt, diabase, and gabbro from widely separated Tethyan locations in Tibet, Iran, Albania, the eastern Himalayan syntaxis, and the seafloor off NW Australia (Fig. 1)." ${ }^{128}$ The author concludes that the rocks are from the Cretaceous and Jurassic time periods: "We collected Early Jurassic to Early Cretaceous Neotethyan magmatic rocks in 1998 from outcrops along 1300 km of the Indus-Yarlung suture zone. ${ }^{129}$ Several tables ${ }^{130}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 60 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary				
Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U
Summary	Age	Age	Age	Age
Average	$\mathbf{1 6 8}$	$\mathbf{4 , 9 9 9}$	$\mathbf{2 2 , 3 5 6}$	$\mathbf{7 , 0 1 4}$
Maximum	$\mathbf{1 , 7 3 9}$	$\mathbf{5 , 2 3 6}$	$\mathbf{5 8 , 7 9 6}$	$\mathbf{1 5 , 7 4 7}$
Minimum	$\mathbf{0}$	$\mathbf{4 , 9 8 2}$	$\mathbf{1 0 , 6 9 9}$	5,042
Difference	$\mathbf{1 , 7 3 9}$	$\mathbf{2 5 4}$	$\mathbf{4 8 , 0 9 6}$	$\mathbf{1 0 , 7 0 5}$
Table 75				

208Pb/232Th, Maximum Ages

| $208 \mathrm{~Pb} / 232 \mathrm{Th}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{5 8 , 7 9 6}$ | 29,705 | 18,607 | 11,427 |
| 54,206 | 27,710 | 18,121 | 11,377 |
| 48,252 | 27,422 | 17,797 | 11,366 |
| 47,976 | 26,674 | 17,787 | 11,241 |
| 46,117 | 26,369 | 17,591 | 10,718 |
| 42,203 | 25,972 | 17,536 | 10,699 |
| 42,192 | 25,590 | 17,054 | 10,699 |
| 41,604 | 25,096 | 16,053 | 10,300 |
| 41,343 | 24,010 | 15,299 | 9,357 |
| 41,231 | 22,718 | 14,340 | $\mathbf{8 , 6 3 2}$ |
| 39,637 | 22,307 | 13,845 | $\mathbf{8 , 4 8 6}$ |
| 38,125 | 22,228 | 13,772 | $\mathbf{8 , 0 5 7}$ |
| 37,115 | 21,827 | 13,652 | $\mathbf{6 , 4 9 7}$ |
| 35,012 | 21,560 | 13,404 | 5,573 |
| 33,584 | 19,910 | 13,403 | 5,425 |
| 31,556 | 19,594 | 13,006 | 4,869 |
| 31,286 | 19,148 | 12,171 | |
| 30,740 | 18,765 | 11,540 | |

Table 76
206Pb/238U, Maximum Ages

| $206 \mathrm{~Pb} / 238 \mathrm{U}$ |
| :---: | :---: | :---: | :---: | :---: |
| 15,747 | $\mathbf{1 1 , 3 0 9}$ | $\mathbf{8 , 7 7 0}$ | $\mathbf{6 , 6 0 2}$ | $\mathbf{5 , 7 2 4}$ |
| 15,067 | 11,248 | 8,508 | $\mathbf{6 , 5 8 9}$ | $\mathbf{5 , 7 2 0}$ |
| 14,363 | 10,360 | $\mathbf{8 , 3 1 5}$ | $\mathbf{6 , 4 2 1}$ | $\mathbf{5 , 6 0 1}$ |
| 13,580 | $\mathbf{9 , 6 4 3}$ | $\mathbf{8 , 3 1 4}$ | $\mathbf{6 , 3 9 8}$ | 5,599 |
| 13,204 | $\mathbf{9 , 4 2 7}$ | $\mathbf{8 , 0 7 2}$ | $\mathbf{6 , 3 6 9}$ | 5,573 |
| 12,780 | $\mathbf{9 , 3 0 0}$ | $\mathbf{8 , 0 2 4}$ | $\mathbf{6 , 3 5 7}$ | $\mathbf{5 , 5 1 5}$ |
| 11,757 | $\mathbf{9 , 1 2 3}$ | $\mathbf{7 , 6 0 4}$ | $\mathbf{6 , 2 1 9}$ | $\mathbf{5 , 4 6 2}$ |
| 11,659 | $\mathbf{9 , 0 1 4}$ | $\mathbf{7 , 5 0 4}$ | $\mathbf{5 , 8 6 3}$ | $\mathbf{5 , 3 1 1}$ |
| 11,537 | $\mathbf{8 , 9 9 6}$ | $\mathbf{7 , 0 5 6}$ | $\mathbf{5 , 8 6 1}$ | $\mathbf{5 , 2 8 6}$ |
| 11,313 | $\mathbf{8 , 9 5 4}$ | $\mathbf{7 , 0 0 2}$ | $\mathbf{5 , 8 0 7}$ | $\mathbf{5 , 1 2 0}$ |

Table 77

Post-Collisional Potassic And Ultrapotassic

According to the article ${ }^{131}$ this rock formation from south west Tibet was dated in 1999 by scientists from Austria. According to the essay the true age is: "Volcanic rocks from SW Tibet, with $40 \mathrm{Ar} / 39 \mathrm{Ar}$ ages in the range $17-25 \mathrm{Ma}$." ${ }^{131}$ Numerous table and charts affirm this as the true age. ${ }^{132}$ Two tables ${ }^{133}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.

Age Dating Summary			
87Rb/86Sr 207Pb/206Pb 208Pb/232Th 206Pb/238U Maximum Age Age Age 25 5,007 99,275 Age 25 5,007 95,541 5,944 25 5,001 71,706 25 5,000 70,277 25 4,997 68,343 2,715 25 4,988 67,704 2,646			

Table 78

Origin Of The Indian Ocean-Type Isotopic Signature

According to the article ${ }^{134}$ this rock formation the Philippine Sea plate was dated in 1998 by scientists from Department of Geology, Florida International University, Miami. According to the essay the true age is: "Spreading centers in three basins, the West Philippine Basin (37-60 Ma), the Parece Vela Basin (18-31 Ma), and the Shikoku Basin (17-25 Ma) are extinct, and one, the Mariana Trough ($0-6 \mathrm{Ma}$), is active (Figure 1)." ${ }^{134}$ Numerous table and charts affirm this as the true age. ${ }^{135}$ Two tables ${ }^{136}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.

Age Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	206Pb/238U	208Pb/232Th
Average	42	41	4,960	4,260	8,373
Maximum	55	54	4,989	$\mathbf{7 , 0 9 3}$	$\mathbf{1 3 , 4 3 0}$
Minimum	19	20	4,921	$\mathbf{1 , 9 0 4}$	$\mathbf{3 , 0 6 5}$
Difference	37	33	$\mathbf{6 8}$	5,188	$\mathbf{1 0 , 3 6 5}$

Table 79

U-Th-Pb Dating Of Secondary Minerals

According to the article ${ }^{137}$ this rock formation Yucca Mountain, Nevada was dated in 2008 by scientists from United States Geological Survey, Geological Survey of Canada, and the Australian National University. According to the essay the true age is unknown. ${ }^{138}$ Other authors have affirmed the same problem. ${ }^{139}$ Two tables ${ }^{140}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 353 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 350,000 times older than the youngest date.

Age Dating Summary

Dating				
207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age
Average	$\mathbf{3 , 4 5 9}$	4,891	$\mathbf{9 , 9 8 4}$	$\mathbf{1 2}$
Maximum	$\mathbf{8 , 1 2 6}$	31,193	352,962	13
Minimum	-445	1	2	11
Difference	$\mathbf{8 , 5 7 1}$	$\mathbf{3 1 , 1 9 2}$	$\mathbf{3 5 2 , 9 6 0}$	2

Table 80

Another table ${ }^{141}$ in the essay has a list of calculated dates As we can see below they are all at radical disagreement with each other. There is a spread of dates of 82 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 82,000 times older than the youngest date.

Age Dating Summary

Dating	206Pb/238U	207Pb/235U	208Pb/232Th	87Rb/86Sr
Summary	Age	Age	Age	Age
Average	1,540	46	7,687	12
Maximum	20,209	486	82,030	13
Minimum	1	0	3	11
Difference	20,208	486	82,027	2
Table 81				

Conclusion

Brent Dalrymple states in his anti creationist book The Age of the Earth:
"Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{142}$
Looking at some of the dating it is obvious that precision is much lacking. He then goes on:
"Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{143}$

I his book he gives a table ${ }^{144}$ with radiometric dates of twenty meteorites. If you run the figures through Microsoft Excel, you will find that they are 98.7% in agreement. There is only a seven percent difference between the ratio of the smallest and oldest dates. As we have seen in this essay, such a perfect fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
The age of 10 to 15 billion years for the age of the Universe.
2 http://en.wikipedia.org/wiki/Age_of_the_universe
$3 \quad$ http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
4 http://en.wikipedia.org/wiki/Age_of the Earth
5 http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
6 The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
7 http://www.bgc.org/isoplot etc/isoplot.html
8 Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73 [Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].

Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990.
Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].
Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].

Early Archaean Rocks At Fyfe Hills, Precambrian Research, Volume 21, 1983, Pages 197
Reference 12, Page 211
Reference 12, Page 215
Shock-Melted Antarctic LL-Chondrites, Geochimica et Cosmochimica Acta, 1990, Voume 54, Pages 3509
Reference 15, Page 3517
Diamonds And Mantle-Derived Xenoliths, Earth and Planetary Science Letters, Volume 42, 1979, Pages 58

Reference 17, Page 66
Reference 17, Page 64
87Rb-87Sr Isochron Of The Norton County Achondrite, Earth And Planetary Science Letters, Volume 3, 1967, Pages 179

Reference 20, Page 182
Base and Precious Metal Veins, Economic Geology, Volume 97, 2002, Pages 23
Reference 22, Page 27, 28
Reference 22, Page 29
Reference 22, Page 34-37
The Munchberg Massif, Southern Germany, Earth and Planetary Science Letters, Volume 99, 1990, Pages 230

Rocks of the Central Wyoming Province, Canadian Journal Of Earth Science, 2006, Volume 43, Pages 1419

Reference 27, Page 1436-1437
Reference 27, Page 1439
Basalts From Apollo 15, Earth and Planetary Science Letters, Volume 17, 1973, Pages 324
Reference 30, Page 334
Reference 30, Page 332
History Of The Pasamonte Achondrite, Earth and Planetary Science Letters, Volume 37, 1977, Pages 1
Reference 33, Pages 3, 9

35 Sr Isotopic Composition Of Afar Volcanics, Earth and Planetary Science Letters, Volume 50, 1980, Pages 247

36 Reference 35, Page 249
37 Reference 35, Page 250, 251
Orogenic Lherzolite Complexes, Earth and Planetary Science Letters, Volume 51, 1980, Pages 71
Reference 37, Page 72
Reference 37, Pages 78-80
40 Isotopic Geochemistry ($\mathrm{O}, \mathrm{Sr}, \mathrm{Pb}$), Earth and Planetary Science Letters, Volume 61, 1982, Pages 97

Reference 40, Pages 101, 102
Reference 40, Pages 104
Cretaceous-Tertiary Boundary Sediments, Earth and Planetary Science Letters, Volume 64, 1983, Pages 356

Reference 43, Pages 361
Correlated N D, Sr And Pb Isotope Variation, Earth and Planetary Science Letters, Volume 59, 1982, Pages 327

Reference 45, Pages 330, 331
A Depleted Mantle Source For Kimberlites, Earth and Planetary Science Letters, Volume 73, 1985, Pages 269

Reference 47, Pages 270
Reference 47, Pages 271, 273
Sm-Nd Isotopic Systematics, Earth and Planetary Science Letters, Volume 71, 1984, Pages 46
Reference 50, Pages 49
Strontium, Neodymium And Lead Compositions, Earth and Planetary Science Letters, Volume 75, 1985, Pages 354-368

Reference 52, Pages 356, 363
54 Trace Element And Sr And Nd Isotope, Earth and Planetary Science Letters, Volume 80, 1986, Pages 281-298

Reference 54, Pages 287
Reference 54, Pages 289
The southeast Australian Lithosphere Mantle, Earth and Planetary Science Letters, Volume 86, 1987, Pages 327

Reference 57, Pages 332
Reference 57, Pages 330, 332

60 Strontium, neodymium and lead isotopic, Earth and Planetary Science Letters, Volume 90, 1988, Pages 26-40

61 Reference 60, Pages 35
62 Reference 60, Pages 31
63 Sr, Nd, and Os isotope geochemistry, Earth and Planetary Science Letters, Volume 99, 1990, Pages 362
64 Reference 63, Pages 364
65 Reference 63, Pages 365, 368
66 Pb , Nd and Sr isotopic geochemistry, Earth and Planetary Science Letters, Volume 105, 1991, Pages 149
67 Reference 66, Pages 154, 160
67 Reference 66, Pages 156, 157
68 Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113, 1992, Pages 107
69 Reference 68, Pages 110
70 Production of Jurassic Rhyolite, Earth and Planetary Science Letters, Volume 134, 1995, Pages 23-36

Reference 70, Pages 25
Evolution of Reunion Hotspot Mantle, Earth and Planetary Science Letters, Volume 134, 1995, Pages 169-185

Reference 72, Pages 173
Reference 72, Pages 174
Reference 72, Pages 180
An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702

Reference 75, Pages 4690, 4691
The 72 Ma Geochemical Evolution, Earth and Planetary Science Letters, Volume 183, 2000, Pages 73
Reference 77, Pages 76-79
The Himalayan collision zone, Earth and Planetary Science Letters, Volume 244, 2006, Pages 234

Reference 79, Pages 234, 235
Reference 79, Pages 238
Reference 79, Pages 242
Evidence for a Non Magmatic Component, Geochimica et Cosmochimica Acta, 2001, Volume 65, Number 4, Pages 571

108 Temporal Evolution of the Lithospheric Mantle, Journal Of Petrology, 2009, Volume 50, Number 10, Pages 1857

Reference 108, Pages 1873, 1874, 1877, 1879, 1880
110 Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51, Number 10, Pages 2003-2045

111 Reference 110, Pages 2038
112 Reference 110, Pages 2024-2026
113 The Petrogenetic Association of Carbonatite, Journal Of Petrology, 1999, Volume 40, Number 4, Pages 525

114 Reference 113, Pages 534, 535
115 Geochemistry of Jurassic Oceanic Crust, Journal Of Petrology, 1998, Volume 39, Number 5, Pages 859-880

116 Reference 115, Pages 867, 868
117 The age of Dar al Gani 476, Geochimica Et Cosmochimica Acta, 2003, Volume 67, Number 18, Pages 3519-3536

118 Reference 117, Pages 3523
119 Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711-748

120 Reference 119, Pages 729, 730
121 Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 555
122 Reference 121, Pages 556
123 Reference 121, Pages 566, 575, 576
124 Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 661

125 Reference 124, Pages 676-678
126 Reference 124, Pages 684
127 Evidence for a Widespread Tethyan, Journal Of Petrology, 2005, Volume 46, Number 4, Pages 829-858

128 Reference 127, Pages 831
129 Reference 127, Pages 840
130 Reference 127, Pages 832-837
131 Post-Collisional Potassic and Ultrapotassic , Journal Of Petrology, 1999, Volume 40, Number 9, Pages 1399-1424

132 Reference 131, Pages 1403, 1405, 1406
133 Reference 131, Pages 1414, 1415
134 Origin of the Indian Ocean-type isotopic signature, Journal Of Geophysical Research, 1998, Volume 103, Number B9, Pages 20,963

Reference 134, Pages 20965, 20969

142 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

Reference 142, Page 23
Reference 142, Page 287

www.creation.com

Rubidium/Strontium Radiometric Dating

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ${ }^{7}$ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically with the Rubidium/Strontium ages. The $\mathrm{U} / \mathrm{Th} / \mathrm{Pb}$ ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang?

If we use isotopic formulas ${ }^{8-11}$ given in standard geology text we can arrive at ages from the $\mathrm{Rb} / \mathrm{Sr}$ and $\mathrm{Nd} / \mathrm{Sm}$ ratios. The formula for $\mathrm{Rb} / \mathrm{Sr}$ age is given as:
$t=\frac{2.303}{\lambda} \log \left(\frac{(87 S r / 86 S r)-(87 S r / 86 S r)_{0}}{(87 R b / 86 S r)}+1\right)$

[1]

Where t equals the age in years. λ equals the decay constant. $(87 \mathrm{Sr} / 86 \mathrm{Sr})=$ the current isotopic ratio. $(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=$ the initial isotopic ratio. $(87 \mathrm{Rb} / 86 \mathrm{Sr})=$ the current isotopic ratio. The same is true for the formula below.
$t=\frac{2.303}{\lambda} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(147 S m / 144 N d)}+1\right)$
Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Sm-Nd And Rb-Sr Isotopic Systematics Of Ureilites

These meteorite samples were dated in 1991 by scientist from the University of Arizona, and the University of California. According to the article ${ }^{15}$ the age of the sample is: "Whole-rock samples of these ureilites are highly depleted assemblages ($147 \mathrm{Sm} / 144 \mathrm{Nd}=0.33-0.35$) having $\mathrm{Sm}-\mathrm{Nd}$ model ages consistent with 4.55 Ga .". If we run the Rubidium/Strontium isotope ratios listed in the article ${ }^{16}$ through Microsoft Excel we get the following values:

1. Sm/Nd Versus Rb/Sr		
Dating	Age	Age
Summary	147Sm $/ 144 \mathrm{Nd}$	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$
Average	4,170	$\mathbf{7 , 7 5 9}$
Maximum	4,912	19,652
Minimum	2,929	2,423
Difference	1,983	17,228

2. $\mathrm{Rb} / \mathrm{Sr}$, Maximum Ages

$87 \mathrm{Rb} / 86 \mathrm{Sr}$	$87 \mathrm{Rb} / 86 \mathrm{Sr}$
Age Sorted	Age Sorted
19,652	10,139
17,419	8,490
14,812	7,714
13,794	6,819
11,015	5,377

The $\mathrm{Rb} / \mathrm{Sr}$ ratios give a 17 billion year spread of dates. I the Solar System is only 4.5 billion years old how can such stupid dates exist?

Sr, Nd, $\mathbf{P b}$ And Os Isotopes

These samples from the Precambrian crystalline basement of Schirmacher Oasis, East Antarctica were dated in 2001 by scientist from Germany and Switzerland. ${ }^{17}$ According to the essay ${ }^{18}$ the age of the sample is 1500 million years. If we run the Lead and Rubidium isotope ratios ${ }^{19}$ through Isoplot and Microsoft Excel we get the following values:
3. Multiple Dating Summary

Dating	Age	Age	Age	Age
Summary	207Pb/206Pb	206Pb/238U	87Rb/86Sr	147Sm/144Nd
Average	5,069	9,857	446	447
Maximum	5,123	11,602	448	454
Minimum	5,026	6,403	444	439
Difference	97	5,198	3	14

4. U/Pb, Maximum Ages

Age Sorted	Age Sorted
$206 \mathrm{~Pb} / 238 \mathrm{U}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$
$\mathbf{1 1 , 6 0 2}$	$\mathbf{1 0 , 3 0 3}$
11,193	9,534
11,158	$\mathbf{8 , 0 9 5}$
10,568	$\mathbf{6 , 4 0 3}$

The Uranium/Lead dates are 10 to 20 times older than the other two methods. The author's choice of the "true age" is just a guess. Five dates are older than the evolutionist age [10 Billion Years] of the Milky Way galaxy.

Sr-Nd-Pb Isotope Systematics Of Mantle Xenoliths

These samples Somerset Island, Canadian Arctic were dated in 2001 by scientist from the University of Quebec. ${ }^{20}$ According to the essay ${ }^{20}$ the age of the sample is " Sr, Nd, and Pb isotopic compositions were determined for a suite of Archean garnet peridotite and garnet pyroxenite xenoliths and their host Nikos kimberlite (100 Ma) from Somerset Island". If we run the Lead and Rubidium isotope ratios ${ }^{21}$ through Isoplot and Microsoft Excel we get the following values:

5. Multiple Dating Summary				
Dating	87Rb/86Sr	147Sm/144Nd	206Pb/238U	207Pb/206Pb
Summary	Age	Age	Age	Age
Average	243	100	4,349	4,974
Maximum	2,523	101	9,644	5,092
Minimum	65	99	1,173	4,904
Difference	2,458	2	1,991	31

6. U/Pb, Maximum Ages

$206 \mathrm{~Pb} / 238 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$
Age Sorted	Age Sorted
9,644	5,092
8,218	5,001
7,359	4,996
6,417	4,992
6,280	4,989
5,273	4,987
5,231	4,986
5,213	4,985
5,033	4,980

The Uranium/Lead dates are 10 to 150 times older than the other two methods. The author's choice of the "true age" is just a guess. Eighteen dates are older than the evolutionist age [4.5 Billion Years] of the Earth.

Strontium, Neodymium, And Lead Isotope Variations

These samples from the Alpha Ridge, central Arctic Ocean were dated in 1997 by scientist from the University of Wisconsin. ${ }^{22}$ According to the essay ${ }^{22}$ the age of the sample is "Provenance changes of silicate sediment deposited during the Late Cenozoic (5-0 Ma)". If we run the Lead 207/206 isotope ratios ${ }^{23}$ through Isoplot and Microsoft Excel we get the following values:
7. Lead 207/206 Dating Summary

Average	4,986
Maximum	5,239
Minimum	4,960
Std Deviation	40

According to the essay the true age by the $\mathrm{Rb} / \mathrm{Sr}$ method is just 5 million years old. That is 1,000 times younger than the Lead 207/206 dating method.

Crystallization History Of Rhyolites At Long Valley

These samples from Long Valley, California were dated in 2002 by scientist from England and The Netherlands. ${ }^{24}$ According to the essay ${ }^{24}$ the age of the sample is "In this study, we present ${ }^{87} \mathrm{Rb} /{ }^{86} \mathrm{Sr}$ and ${ }^{230} \mathrm{Th} /{ }^{238} \mathrm{U}$ isotope analyses of glasses and phenocrysts from postcaldera rhyolites erupted between 150 to 100 ka from the Long Valley magmatic system." According to various dating charts ${ }^{25}$ the samples are only 100 thousand years old. If we run the Lead and Rubidium isotope ratios ${ }^{26}$ through Isoplot and Microsoft Excel we get the following values:

8. Multiple Dating Summary		
Dating	Age	Age
Summary	87Rb/86Sr	207Pb/206Pb
Average	-2	4,953
Maximum	5	4,954
Minimum	-16	4,951
Difference	21	3

The Lead 207/206 date is 49,500 times the so called true age. The Rubidium/Strontium dates are way off to.

Fluid-Rock Interaction During Progressive Migration

These samples from the Cretaceous Okorusu carbonatite complex (Namibia) were dated in 2003 by scientist from England, Germany and Brazil. ${ }^{27}$ According to the essay ${ }^{27}$ the age of the sample is "A crush-leach experiment for fluid inclusions in the hydrothermal quartz yielded a $\mathrm{Rb}-\mathrm{Sr}$ isochron age of 103 Ma ." If we run the Lead and Rubidium isotope ratios ${ }^{28}$ through Isoplot and Microsoft Excel we get the following values:

9. Multiple Dating Summary				
Dating	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	207Pb/206Pb
Summary	Age	Age	Age	Age
Average	$\mathbf{3 2}$	$\mathbf{1 0 , 8 7 4}$	$\mathbf{5 , 2 1 4}$	$\mathbf{4 , 5 9 8}$
Maximum	$\mathbf{3 5 1}$	$\mathbf{3 6 , 7 6 4}$	$\mathbf{1 0 , 6 3 8}$	$\mathbf{5 , 0 1 9}$
Minimum	$\mathbf{0}$	$\mathbf{1 3 8}$	$\mathbf{3 2 8}$	$\mathbf{2 , 0 4 7}$
Difference	$\mathbf{3 5 1}$	$\mathbf{3 6 , 6 2 6}$	$\mathbf{1 0 , 3 1 0}$	$\mathbf{2 , 9 7 2}$

10. U/Pb, Maximum Ages

$206 \mathrm{~Pb} / 238 \mathrm{U}$	$207 \mathrm{~Pb} / 235 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$
Age Sorted	Age Sorted	Age Sorted
36,764	10,638	5,019
25,353	8,816	5,013
22,728	8,372	5,000
17,110	7,449	4,990
7,145	5,517	4,943
4,321	4,632	4,937
2,955	4,257	4,888

The $206 \mathrm{~Pb} / 238 \mathrm{U}$ dates are between 29 to 360 times to old. The $207 \mathrm{~Pb} / 235 \mathrm{U}$ dates are between 42 to 106 times to old. The $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ dates are all 50 times to old. The Rubidium/Strontium dates are way off to.

Constraints On The U-Pb Isotopic Systematics

These samples from the Martian meteorite Zagami were dated in 2005 by scientist from the University of New Mexico. ${ }^{29}$ According to the essay ${ }^{29}$ the age of the sample is "Although the $\mathrm{Rb}-\mathrm{Sr}$ and $\mathrm{Sm}-\mathrm{Nd}$ systems define concordant crystallization ages of $166+-6 \mathrm{Ma}$ and $166+-12 \mathrm{Ma}$, respectively, the $\mathrm{U}-\mathrm{Pb}$ isotopic system is disturbed. Nevertheless, an age of 156 Ma is derived from the ${ }^{238} \mathrm{U}-{ }^{206} \mathrm{~Pb}$ isotopic system from the purest mineral fractions (maskelynite and pyroxene)." If we run the Lead and Rubidium isotope ratios ${ }^{30}$ through Isoplot and Microsoft Excel we get the following values:

11. Multiple Dating Summary			
Dating	Age	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	207Pb/206Pb	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$
Average	$\mathbf{4 , 5 0 1}$	5,081	$\mathbf{2 , 8 2 6}$
Maximum	$\mathbf{6 , 1 8 6}$	5,204	$\mathbf{6 , 5 6 6}$
Minimum	4,071	$\mathbf{4 , 9 6 2}$	$\mathbf{2 1 8}$
Difference	$\mathbf{2 , 1 1 4}$	$\mathbf{2 4 2}$	$\mathbf{6 , 3 4 8}$

All the dating methods disagree strongly with each other.

Age And Radiogenic Isotopic Systematics

These samples from the Borden complex of northern Ontario were dated in 1986 by scientist from Carleton University, Ontario, the University of California at Santa Barbara, Santa Barbara, and the Ontario Geological Survey. ${ }^{31}$ According to the essay ${ }^{31}$ the age of the sample is " $\mathrm{Rb}-\mathrm{Sr}$ and U-Pb data from the Borden complex of northern Ontario, a carbonatite associated with the Kapuskasing Structural Zone, indicate a mid-Proterozoic age. $\mathrm{A}^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ age of $1872 \pm 13 \mathrm{Ma}$ is interpreted as the emplacement age of this body, grouping it with other ca. 1900 Ma complexes that are the oldest known carbonatites associated with the Kapuskasing structure." If we run the Lead and Rubidium isotope ratios ${ }^{30}$ through Isoplot and Microsoft Excel we get the following values:
12. Multiple Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	147Sm/144Nd	87Rb/86Sr	208Pb/232Th	207Pb/206Pb	206Pb/238U
Average	1,888	$\mathbf{3 , 8 1 5}$	115,021	5,187	$\mathbf{3 8 , 7 5 2}$
Maximum	$\mathbf{1 , 9 0 6}$	$\mathbf{9 , 4 0 5}$	124,106	5,212	44,204
Minimum	1,868	1,515	107,946	5,174	$\mathbf{3 1 , 6 9 5}$
Difference	$\mathbf{3 8}$	$\mathbf{7 , 8 9 0}$	16,160	38	12,509

The maximum $208 \mathrm{~Pb} / 232 \mathrm{Th}$ age is 82 times older than the minimum $87 \mathrm{Rb} / 86 \mathrm{Sr}$ age. There is a 122 billion year difference between the oldest and youngest dates. The average $208 \mathrm{~Pb} / 232 \mathrm{Th}$ age is 115 billion years. The average $206 \mathrm{~Pb} / 238 \mathrm{U}$ age is 38 billion years.
13. U/Pb, Maximum Ages

Age Sorted	Age Sorted	Age Sorted
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$
124,106	5,212	44,204
119,630	5,188	41,998
116,743	5,184	41,408
113,288	5,183	38,515
108,412	5,181	34,690
107,946	5,174	31,695

Crustal Age Domains

These samples from the Mozambique Belt of Tanzania were dated in 1998 by scientist from Germany. ${ }^{33}$ According to the essay ${ }^{33}$ the age of the sample is "Most boundaries of these age domains are overprinted by Neoproterozoic (Pan-African) tectonism and metamorphism. Granitoids from the Archean craton show Nd model ages of 2.7-3.1 Ga." If we run the Lead and Rubidium isotope ratios ${ }^{34}$ through Isoplot and Microsoft Excel we get the following values:

14. Multiple Dating Summary		
Dating	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$
Average	$\mathbf{2 , 2 4 8}$	$\mathbf{5 , 1 3 4}$
Maximum	$\mathbf{2 , 8 6 5}$	$\mathbf{5 , 3 3 3}$
Minimum	$\mathbf{1 , 4 8 8}$	$\mathbf{5 , 0 1 8}$
Difference	$\mathbf{1 , 3 7 7}$	$\mathbf{3 1 5}$

If the Rubidium/Strontium dating is accurate, the $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ dates are stupid. The Earth is only supposed to be 4.5 billion years old.

Melt Peridotite Reactions

These samples from the Horoman Peridotite Massif, Japan were dated in 2010 by scientist from Japan. ${ }^{35}$ According to the essay ${ }^{36}$ the age of the sample is "The Re/Os isotope data of Saal et al. (2001) gave an apparent melting age of 900 Ma . Malaviarachchi et al. (2008) reported $\mathrm{Sm} / \mathrm{Nd}$ and $\mathrm{Lu} / \mathrm{Hf}$ isochron ages of 1 Ga as the partial melting age for the Horoman Massif." If we run the Lead and Hafnium isotope ratios ${ }^{37}$ through Isoplot and Microsoft Excel we get the following values:
15. Multiple Dating Summary

Dating	Age	Age
Summary	207Pb/206Pb	176Lu/177Hf
Average	5,014	440
Maximum	5,050	955
Minimum	4,999	262
Difference	52	693

The spread of dates is just random. If the Hafnium dating is accurate, the $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ dates are stupid. The Earth is only supposed to be 4.5 billion years old.

Feldspathic Clasts In Yamato-86032

These samples from the Yamato meteorite were dated in 2006 by scientist from USA and Japan. ${ }^{38}$ According to the essay ${ }^{38}$ the age of the sample is "The Y-86032 protolith formed at least $4.43 \pm 0.03 \mathrm{Ga}$ ago as determined from a $\mathrm{Sm}-\mathrm{Nd}$ isochron for mineral fragments from the breccia clast composed predominantly of An93 anorthosite and a second clast of more varied composition." If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ and $147 \mathrm{Sm} / 144 \mathrm{Nd}$ isotope ratios ${ }^{39}$ through Isoplot and Microsoft Excel we get the following values:
16. Multiple Dating Summary

16. Multiple Dating Summary		
Dating	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd
Average	4,213	294,470
Maximum	5,277	315,266
Minimum	2,575	251,680
Difference	2,703	63,586

The maximum $147 \mathrm{Sm} / 144 \mathrm{Nd}$ age is 122 times older than the minimum $87 \mathrm{Rb} / 86 \mathrm{Sr}$ age. There is a 300 billion year difference between the oldest and youngest dates. According to the article the initial $143 \mathrm{Nd} / 144 \mathrm{Nd}$ ratio is: "However, eNd for these data is more appropriately calculated as ENd HED $=-0.64 \pm 0.13$ relative to initial $143 \mathrm{Nd} / 144 \mathrm{Nd}$ obtained at the Johnson Space Center" ${ }^{40}$ The range is thus between -0.51 and -0.77 . If we feed those initial ratios into Microsoft Excel we get the following dating range:
17. 143Nd/144Nd, Multiple Dating Summary

Dating	143Nd/144Nd	143Nd/144Nd	143Nd/144Nd
Summary	Initial $=-0.64$	Initial $=-0.51$	Initial $=-0.77$
Average	294,470	278,990	308,527
Maximum	315,266	299,395	329,645
Minimum	251,680	237,101	264,990
Difference	63,586	62,294	64,655

Using the initial isotope range we get a minimum age of 250 billion years! We get a maximum age of 330 billion years!

Cretaceous Seamounts Along The Continent

These samples from the Atlantic sea floor off the coast of Spain were dated in 2006 by scientist from France. ${ }^{41}$ According to the essay ${ }^{41}$ the age of the sample is "The ages reveal different pulses of alkaline magmatism occurring at 104.4 ± 1.4 (2r) Ma and $102.8 \pm 0.7 \mathrm{Ma}$ on the Sponge Bob seamount, at $96.3 \pm 1.0 \mathrm{Ma}$ on Ashton seamount, at $92.3 \pm 3.8 \mathrm{Ma}$ on the Gago Coutinho seamount, at $89.3 \pm 2.3 \mathrm{Ma}$ and $86.5 \pm 3.4 \mathrm{Ma}$ on the Jo Sister volcanic complex, and at $88.3 \pm 3.3 \mathrm{Ma}, 88.2 \pm 3.9$, and $80.5 \pm 0.9 \mathrm{Ma}$ on the Tore locality." If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ and Uranium/Lead isotope ratios ${ }^{42}$ through Isoplot and Microsoft Excel we get the following values:
18. Multiple Dating Summary

Dating	Age	Age	Age
Summary	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	87Rb/86Sr
Average	4,933	212	105
Maximum	4,943	702	293
Minimum	4,923	91	0
Difference	20	611	293

The three dating methods all disagree with each other. The Lead 207/206 ratios give dates 50 times to old.
19. Lead 207/206 Dating Summary

Average	$\mathbf{3 9 0}$
Maximum	$\mathbf{2 , 1 0 2}$
Minimum	-635
Difference	2,737

If we run another set of Lead 207/206 ratios ${ }^{43}$ through Isoplot we find forty three of the Lead 207/206 dates are over 200 million years old. Nine have negative ages.

Petrology And Geochemistry Of Target Rocks

These samples from the Bosumtwi impact structure, Ghana were dated in 1998 by scientist from the University of Vienna, the University of the Witwatersrand, South Africa and Dartmouth College, New Hampshire. ${ }^{44}$ According to the essay ${ }^{44}$ the age of the sample is "A best-fit line for the Bosumtwi crater rocks in a $\mathrm{Rb}-\mathrm{Sr}$ isotope evolution diagram yields an "age" of 1.98 Ga , and an initial $87 \mathrm{Sr} / 86 \mathrm{Sr}$ ratio of 0.701 , which is close to results previously obtained for granitoid intrusions in the Birimian of Ghana. Our Nd isotopic data yield depleted mantle model ages ranging from 2.16 to 2.64 Ga ," If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{45}$ through Isoplot and Microsoft Excel we get the following values:
20. Rb/Sr Dating Summary

Average	$\mathbf{5 , 6 3 8}$
Maximum	$\mathbf{7 , 0 1 5}$
Minimum	$\mathbf{3 , 5 3 7}$
Difference	$\mathbf{3 , 4 7 8}$

21. $\mathrm{Rb} / \mathrm{Sr}$ Dating, Maximum Ages

87Rb/86Sr	87Rb/86Sr	87Rb/86Sr
Maximum Age	Maximum Age	Maximum Age
$\mathbf{7 , 0 1 5}$	$\mathbf{5 , 9 8 0}$	$\mathbf{5 , 3 8 4}$
$\mathbf{6 , 9 3 2}$	$\mathbf{5 , 8 0 4}$	$\mathbf{5 , 1 1 1}$
$\mathbf{6 , 7 6 1}$	$\mathbf{5 , 7 9 5}$	$\mathbf{4 , 9 2 6}$
$\mathbf{6 , 3 2 2}$	$\mathbf{5 , 6 8 7}$	4,576
$\mathbf{6 , 1 4 6}$	$\mathbf{5 , 6 0 3}$	$\mathbf{4 , 4 7 9}$
$\mathbf{5 , 9 9 4}$	$\mathbf{5 , 4 3 9}$	$\mathbf{3 , 5 3 7}$

The essay claims that the model age is 2.5 billion years. The minimum age obtained is 3.5 billion years. Fourteen dates are over 5 billion years. The Earth is only supposed to be 4.5 billion years old.

Geochronology Of The Deep Profile

These samples from the Vredefort granites in South Africa were dated in 1981 by scientist from the University of the Witwatersrand Johannesburg, South Africa. ${ }^{46}$ According to the essay ${ }^{46}$ the age of the sample is " $\mathrm{Rb}-\mathrm{Sr}$ and $\mathrm{Th}-\mathrm{Pb}$ isochrones of $\sim 3500 \mathrm{~m} . \mathrm{y}$. are recorded in the mafic granulite relicts. A companion paper (Welke and Nicolaysen this issue) provides evidence for an early crust-forming event in this sector $\sim 3800 \mathrm{~m} . \mathrm{y}$. ago. From ~ 3500 m.y. onward, these deeper crustal levels did not undergo addition of new Archean crust-forming material on a major scale." If we run the Uranium/Lead isotope ratios from table 3 in the article ${ }^{47}$ through Isoplot and Microsoft Excel we get the following values:

22. Uranium/Lead Dating Summary			
Dating	Age	Age	Age
Summary	208Pb/232Th	206Pb/238U	207Pb/206Pb
Average	$\mathbf{1 2 , 1 4 5}$	$\mathbf{9 , 1 0 3}$	4,841
Maximum	$\mathbf{1 8 , 3 1 9}$	$\mathbf{1 6 , 4 9 8}$	$\mathbf{5 , 3 3 7}$
Minimum	$\mathbf{5 , 6 5 2}$	$\mathbf{3 , 8 6 5}$	$\mathbf{4 , 1 6 8}$
Difference	$\mathbf{1 2 , 6 6 7}$	$\mathbf{1 2 , 6 3 3}$	$\mathbf{1 , 1 6 9}$

23. Uranium/Lead Dating, Maximum Ages

Age Sorted	Age Sorted	Age Sorted
208Pb/232Th	206Pb/238U	207Pb/206Pb
18,319	16,498	5,337
14,951	16,120	5,312
14,880	14,623	5,232
14,002	10,837	5,220
13,502	10,737	5,176
12,101	$\mathbf{9 , 6 5 7}$	$\mathbf{5 , 1 1 8}$
11,815	$\mathbf{9 , 4 9 6}$	5,101
11,594	$\mathbf{7 , 9 0 2}$	4,756
11,416	5,324	4,630
11,130	4,615	4,358
10,381	4,441	4,342
$\mathbf{8 , 1 3 7}$	4,230	4,184
5,652	$\mathbf{3 , 8 6 5}$	4,168

The dates are spread over almost 13 billion years between the youngest and oldest. If we run the Uranium/Lead isotope ratios from table 7 in the article ${ }^{48}$ through Isoplot and Microsoft Excel we get the following values:
24. Uranium/Lead Dating Summary

Dating	Age	Age	Age
Summary	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$
Average	$\mathbf{2 4 , 3 0 9}$	$\mathbf{1 5 , 1 2 0}$	$\mathbf{5 , 3 2 4}$
Maximum	$\mathbf{6 4 , 6 1 0}$	$\mathbf{2 5 , 8 9 4}$	$\mathbf{6 , 4 9 8}$
Minimum	$\mathbf{1 0 , 0 1 8}$	$\mathbf{3 , 2 4 5}$	$\mathbf{4 , 8 6 8}$
Difference	54,592	$\mathbf{2 2 , 6 4 9}$	$\mathbf{1 , 6 2 9}$

25. Uranium/Lead Dating, Maximum Ages

Age	Age	Age
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	207Pb/206Pb
$\mathbf{6 4 , 6 1 0}$	25,894	$\mathbf{6 , 4 9 8}$
50,397	22,874	5,381
40,744	20,347	5,361
33,172	19,156	5,350
28,598	18,933	5,347
26,293	18,341	5,331
18,726	16,394	5,329
15,999	16,373	5,317
14,346	15,949	5,314
13,998	15,794	5,309
13,743	14,580	5,295
11,902	14,220	5,239
11,255	13,743	5,226
10,840	12,171	5,223
10,018	10,175	5,221

The dates are spread over a 61 billion year range, between the youngest and oldest. If we run the Uranium/Lead isotope ratios from table 4 in the article ${ }^{49}$ through Isoplot and Microsoft Excel we get the following values:
26. Uranium/Lead Dating Summary

Dating	Age	Age
Summary	207Pb/235U	206Pb/238U
Average	$\mathbf{3 , 2 2 0}$	$\mathbf{3 , 4 4 6}$
Maximum	$\mathbf{3 , 6 6 0}$	$\mathbf{4 , 7 9 8}$
Minimum	$\mathbf{2 , 9 3 1}$	$\mathbf{2 , 8 8 9}$
Difference	$\mathbf{7 2 8}$	$\mathbf{1 , 9 0 9}$

If we run the Rubidium/Strontium isotope ratios from tables 2, 5, 6 and 8 in the article ${ }^{50}$ through Microsoft Excel we get the following values:
27. Rubidium/Strontium Dating Summary

27. Rubidium/Strontium Dating Summary				
Rb/Sr Dating Table 2 Table 5 Table 6 Table 8 Summary Age Age Age Average $\mathbf{2 , 9 8 2}$ $\mathbf{3 , 5 1 4}$ 2,812 Maximum $\mathbf{3 , 0 3 8}$ 4,523 2,888 Minimum 2,886 2,848 2,726 Difference 152 1,675 161				

Again the author's choice of "true" dates and dating method is just random and meaningless.

Mechanisms For Incompatible-Element Enrichment

These samples from the meteorite Northwest Africa 032 were dated in 2008 by scientist from the Lawrence Livermore National Laboratory, the University of New Mexico, the University of California, Berkeley and Arizona State University. ${ }^{51}$ According to the essay ${ }^{51}$ the age of the sample is "Rubidium-Sr isotopic analyses yield an age of 2947 ± 16 Ma." Two different diagrams ${ }^{52}$ affirm this as the true age. If we run the Rubidium/Strontium isotope ratios from table 3 in the article ${ }^{53}$ through Microsoft Excel we get the following values:
28. Rubidium/Strontium Dating Summary

Average	$\mathbf{5 , 7 9 5}$
Maximum	$\mathbf{1 3 , 9 3 3}$
Minimum	$\mathbf{2 , 8 8 9}$
Difference	$\mathbf{1 1 , 0 4 4}$

Out of the 11 isotope ratios, three gave ages over 10 billion years old. Two gave ages over 4 billion years old.

A Non-Cognate Origin Of The Gibeon Kimberlites

These samples from the Gibeon Province, Namibia were dated in 2001 by scientist from England and the Netherlands. ${ }^{54}$ According to the essay ${ }^{55}$ the age of the sample is 72 million years old. If we run the various isotope ratios from the article ${ }^{56}$ through Microsoft Excel we get the following values:

29. Multiple Dating Summary			
Dating	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb
Average	107	72	4,963
Maximum	411	74	5,044
Minimum	-34	70	4,907
Difference	444	5	137

The Lead dates are 50 times older than the Rubidium dates. The Rubidium dates were spread over a 444 million year range. The authors choice of the "true" age is just a guess.

Zircon U-Pb Geochronology

These samples from the Shandong Province (Luxi), in the North China Craton were dated in 2007 by scientist from China and Canada. ${ }^{60}$ According to the essay ${ }^{60}$ the age of the sample is 144 billion years old. If we run the various isotope ratios from the article ${ }^{59}$ through Microsoft Excel we get the following values:
30. Multiple Dating Summary

Dating	Age	Age	Age
Summary	$87 \mathrm{Rb} / 86 \mathrm{Sr}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$147 \mathrm{Sm} / 144 \mathrm{Nd}$
Average	143	5,052	131
Maximum	145	5,107	144
Minimum	139	4,999	-11
Difference	6	108	155

Radiometric Ages Of Basaltic Achondrites

These meteorite samples were dated in 1997 by scientist from the Carnegie Institution of Washington. ${ }^{60}$ According to the essay ${ }^{60}$ the age of the sample is 4.4 billion years old. If we run the various isotope ratios from the article ${ }^{59}$ through Microsoft Excel we get the following values:

207Pb/P06Pb	Table 1	Table 2
Dating	Age Summary	Age Summary
Average	$\mathbf{4 , 9 4 1}$	$\mathbf{4 , 6 8 6}$
Maximum	$\mathbf{5 , 1 3 5}$	$\mathbf{5 , 0 8 1}$
Minimum	$\mathbf{4 , 5 5 7}$	$\mathbf{4 , 3 7 1}$
Difference	$\mathbf{5 7 8}$	$\mathbf{7 1 1}$

Conclusion

As we have seen in this essay, such a perfect evolutionist fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in evolutionist's books is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
The age of 10 to 15 billion years for the age of the Universe.
http://en.wikipedia.org/wiki/Age_of the_universe
http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
http://en.wikipedia.org/wiki/Age_of the_Earth
http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
http://www.bgc.org/isoplot_etc/isoplot.html
Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73 [Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].

Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990.
Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].
Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].

Sm-Nd and Rb-Sr isotopic systematics of ureilites, Geochimica et Cosmochimica Acta, 1991, Volume 55, Pages 829-848

Reference 15, Pages 836, 837
Sr, Nd, Pb and Os Isotopes, Journal Of Petrology, 2001, Volume 42, Number 7, Pages 1387-1400
Reference 17, Pages 1389
Reference 17, Pages 1391, 1393
Sr-Nd-Pb isotope systematics of mantle xenoliths, Geochimica et Cosmochimica Acta, 2001, Volume 65, Number 22, Pages 4243

Reference 20, Pages 4246, 4248
Strontium, Neodymium, And Lead Isotope Variations, Geochimica et Cosmochimica Acta, 1997, Volume 61, Number 19, Pages 4181

Reference 22, Pages 4186, 4187
Crystallization History Of Rhyolites At Long Valley, Geochimica et Cosmochimica Acta, 2002, Volume 66, Number 10, Pages 1821

Reference 24, Pages 1825, 1828, 1831
Reference 24, Pages 1826
Fluid-Rock Interaction During Progressive Migration, Geochimica et Cosmochimica Acta, 2003, Volume 67, Number 23, Pages 4577

Reference 27, Pages 4579, 4586

Constraints on the U-Pb Isotopic Systematics, Geochimica et Cosmochimica Acta, 2005, Volume 69, Number 24, Pages 5819

Reference 29, Pages 5821, 5822

Age and Radiogenic Isotopic Systematics, Canadian Journal Of Earth Science, 1987, Volume 24, Pages 24

Reference 31, Pages 26, 27
Crustal Age Domains, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 749
Reference 33, Pages 753, 754, 761
Melt Peridotite Reactions, Journal Of Petrology, 2010, Volume 51, Number 7, Pages 1417
Reference 35, Pages 1419
Reference 35, Pages 1433
Feldspathic Clasts in Yamato-86032, Geochimica et Cosmochimica Acta, 2006, Volume 70, Pages 5990-6015

Reference 38, Pages 6000
Reference 38, Pages 6008
Cretaceous Seamounts Along the Continent, Geochimica et Cosmochimica Acta, 2006, Volume 70, Pages 4950-4976

Reference 41, Pages 4965-4967
Reference 41, Pages 4961-4964
Petrology And Geochemistry Of Target Rocks, Geochimica et Cosmochimica Acta, 1998, Volume 62, Number 12, Pages 2179

Reference 44, Pages 2191
Geochronology of the Deep Profile, Journal Of Geophysical Research, 1981, Volume 86, Number B11, Pages 10663

Reference 46, Pages 10666
Reference 46, Pages 10668
Reference 46, Pages 10667
Reference 46, Pages 10666, 10667, 10668
Mechanisms for Incompatible-Element Enrichment, Geochimica et Cosmochimica Acta, 2009, Volume 73, Pages 3963-3980

Reference 51, Pages 3971, 3972
Reference 51, Pages 3967

54 A Non-Cognate Origin Of The Gibeon Kimberlites, Journal Of Petrology, 2001, Volume 42, Number 1, Pages 159

55 Reference 54, Pages 159, 166
56 Reference 54, Pages 163, 166
57 Zircon U-Pb Geochronology, Chemical Geology 255 (2008) 329-345
58 Reference 57, Pages 335
59 Reference 57, Pages 333, 335
60 Radiometric Ages of Basaltic Achondrites, Geochimica et Cosmochimica Acta, 1997, Volume 61, Number 8, Pages 1713

61
Reference 60, Pages 1717-1718

www.Creation.com

The Thorium Lead Dating Method

By Paul Nethercott
September 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable then it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." 4 "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

If we use the computer program Isoplot ${ }^{7}$ and calculate the ages of the isoptopic ratios in geology magazine articles we see why not dates have been put beside them. Many dates are negative or older than the age of the universe. That is logically impossible. How can the rock have formed millions of years in the future? The dating methods contradict each other and give ages that disagree with the Geological Column.

How can Earth rocks be dated as being older than the Big Bang? Here are dates calculated from several articles taken from major geology magazines which give absolutely absurd dates.

Tracing the Indian Ocean Mantle

These samples were dated in 1998 by scientists from the School Of Ocean And Earth Science And Technology, University Of Hawaii, Honolulu. According to this article the samples were taken from volcanic material that is only 100 million years old. ${ }^{8}$ If we put isotopic ratios ${ }^{9}$ into Microsoft Excel and run the through Isoplot we find the average age is almost 17 billion years old. In Table 2 we see some fantastic dates.

Average	$\mathbf{1 6 , 8 9 0}$
Maximum	$\mathbf{8 2 , 5 6 1}$
Minimum	$\mathbf{1 , 1 3 9}$
Difference	$\mathbf{8 1 , 4 2 2}$

Table 1
Thorium/Lead - Maximum Ages

Million Years	Million Years	Million Years	Million Years
$\mathbf{8 2 , 5 6 1}$	$\mathbf{2 7 , 3 6 4}$	$\mathbf{1 7 , 6 6 2}$	$\mathbf{1 0 , 7 2 8}$
$\mathbf{5 2 , 9 0 9}$	$\mathbf{2 7 , 2 4 1}$	$\mathbf{1 5 , 7 2 3}$	$\mathbf{9 , 9 8 6}$
51,126	$\mathbf{2 5 , 1 0 2}$	$\mathbf{1 5 , 1 3 2}$	$\mathbf{9 , 5 7 0}$
39,277	24,925	$\mathbf{1 5 , 0 3 2}$	$\mathbf{9 , 3 5 4}$
37,502	23,860	$\mathbf{1 4 , 9 5 0}$	$\mathbf{9 , 3 3 1}$
35,301	23,310	$\mathbf{1 4 , 6 9 9}$	$\mathbf{9 , 2 9 0}$
31,541	21,943	$\mathbf{1 4 , 2 3 2}$	$\mathbf{9 , 1 4 1}$
$\mathbf{3 0 , 6 0 8}$	$\mathbf{2 0 , 2 6 6}$	$\mathbf{1 3 , 7 7 8}$	$\mathbf{6 , 9 2 9}$
28,811	$\mathbf{2 0 , 1 4 4}$	$\mathbf{1 3 , 2 7 6}$	$\mathbf{6 , 6 6 3}$
28,284	$\mathbf{1 9 , 0 0 5}$	$\mathbf{1 2 , 1 4 0}$	$\mathbf{6 , 5 9 0}$
27,460	$\mathbf{1 8 , 6 7 4}$	$\mathbf{1 1 , 7 5 4}$	$\mathbf{6 , 5 0 5}$

Table 2

Petrogenesis of the Flood Basalts

These samples were dated in 1998 by scientists from the Department Of Earth, Atmospheric And Planetary Sciences, Massachusetts Institute Of Technology. According to this article the samples were taken from the volcanic crust of the Kerguelen Archipelago that is only 30 million years old. ${ }^{10}$ If we put isotopic ratios ${ }^{11}$ into Microsoft Excel and run the through Isoplot we find the average age of Mount Bureau is over 5 billion years old. In Table 3 we see some fantastic dates for both mountains.

Thorium/Lead - Maximum Ages	
Mount Bureau	Mount Rabouillere
$\mathbf{4 4 , 3 7 8}$	$\mathbf{7 , 7 8 8}$
$\mathbf{9 , 0 9 2}$	$\mathbf{7 , 5 1 8}$
$\mathbf{8 , 6 5 1}$	$\mathbf{7 , 4 1 6}$
$\mathbf{8 , 6 2 4}$	$\mathbf{6 , 5 6 0}$
$\mathbf{8 , 1 4 4}$	$\mathbf{6 , 4 2 2}$
$\mathbf{8 , 1 4 2}$	$\mathbf{6 , 3 2 8}$
$\mathbf{8 , 0 2 3}$	$\mathbf{6 , 2 1 6}$
$\mathbf{7 , 5 0 7}$	$\mathbf{5 , 9 6 6}$
$\mathbf{7 , 2 4 5}$	$\mathbf{4 , 4 0 6}$
$\mathbf{7 , 0 4 6}$	$\mathbf{2 , 7 9 9}$
$\mathbf{6 , 9 6 1}$	
$\mathbf{6 , 5 4 8}$	
$\mathbf{5 , 7 8 7}$	
$\mathbf{5 , 7 7 3}$	
$\mathbf{5 , 6 3 9}$	
5,613	
5,107	

Nature of the Source Regions

These samples were dated in 2004 by scientists from the Department Of Earth Sciences, The Open University, England. According to the article: "Most samples are Miocene in age, ranging from 10 to 25 Ma in the south and 19Ma to the present day in northern Tibet." ${ }^{12,13}$ If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ ratios ${ }^{14}$ in the essay through Isoplot we get dates between 1 and 24 million years. If we run the Uranium/Lead ratios ${ }^{15}$ in the essay through Isoplot we get unbelievable dates as listed below in Table 4.

Thorium/Lead - Maximum Ages	
North Tibet	South Tibet
Age	Age
$\mathbf{8 8 , 2 9 4}$	$\mathbf{3 3 , 1 9 1}$
$\mathbf{8 1 , 6 1 4}$	$\mathbf{2 5 , 0 1 5}$
$\mathbf{1 3 , 4 7 5}$	$\mathbf{1 1 , 1 0 2}$
11,504	$\mathbf{9 , 2 6 5}$
$\mathbf{1 1 , 4 2 0}$	$\mathbf{8 , 2 0 5}$
$\mathbf{1 1 , 3 5 0}$	$\mathbf{6 , 0 9 2}$
Table 4,826	

Generation of Palaeocene Adakitic Andesites

These samples were dated in 2007 by scientists from the Chinese Academy Of Sciences, Wushan, Guangzhou. According to the article: "The initial Sr, Nd and Pb isotopic ratios were corrected using the $\mathrm{Ar} / \mathrm{Ar}$ age of $55 \mathrm{Ma} .{ }^{16},{ }^{17}$ If we run the Uranium/Lead ratios ${ }^{18}$ in the essay through Isoplot we get unbelievable dates as listed below in Table 5.

Thorium/Lead - Maximum Ages	
Sample	$208 \mathrm{~Pb} / 232 \mathrm{Th}$
$04 Y J-6$	$\mathbf{1 0 , 5 1 8}$
$04 Y J-5$	$\mathbf{1 0 , 2 7 7}$
$04 Y J-9$	8,529
$04 Y J-7$	$\mathbf{8 , 3 6 0}$
$04 Y J-1$	$\mathbf{8 , 1 6 5}$
$04 Y J-2$	$\mathbf{7 , 8 0 0}$

Table 5

Evidence for a Widespread Tethyan Upper Mantle

In 2005 scientists from the School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu dated these rocks. According to the article: "Isotopic data for such sites show that mantle similar to that beneath the modern Indian Ocean was present, at least in places, as long ago as 140 Ma , the age of the oldest true Indian Ocean crust yet sampled." ${ }^{19,20}$ If we run the $\mathrm{Rb} / \mathrm{Sr}$ ratios ${ }^{21}$ through Isoplot we see that the average age is 168 million years. [Table 6]

Rb/Sr Ages Summary

Average	$\mathbf{1 6 8}$
Maximum	$\mathbf{1 , 7 3 9}$
Minimum	0
Difference	1,739

Table 6
If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{22}$ through Isoplot we see that the average age is 22,675 million years. [Table 7]
Pb/Th Ages Summary

Maximum	Minimum	Difference	Average
$\mathbf{5 8 , 7 9 5}$	$\mathbf{4 , 8 6 9}$	$\mathbf{5 3 , 9 2 6}$	$\mathbf{2 2 , 6 7 5}$

Table 7

Thorium/Lead - Maximum Ages

Age	Age	Age	Age
58,796	29,705	18,607	11,427
54,206	27,710	18,121	11,377
48,252	27,422	17,797	11,366
47,976	26,674	17,787	11,241
46,117	26,369	17,591	10,718
42,203	25,972	17,536	10,699
42,192	25,590	17,054	10,699
41,604	25,096	16,053	10,300
41,343	24,010	15,299	9,357
41,231	22,718	14,340	8,632
39,637	22,307	13,845	8,486
38,125	22,228	13,772	8,057
37,115	21,827	13,652	6,497
35,012	21,560	13,404	5,573
33,584	19,910	13,403	5,425
31,556	19,594	13,006	4,869
31,286	19,148	12,171	
30,740	18,765	11,540	

Table 8

Post-Collisional Potassic and Ultrapotassic

According to the article: "Major and trace element, $\mathrm{Sr}-\mathrm{Nd}-\mathrm{Pb}-\mathrm{O}$ isotope and mineral chemical data are presented for post-collisional ultrapotassic, silicic and high-K calc-alkaline volcanic rocks from SW Tibet, with $40 \mathrm{Ar} / 39 \mathrm{Ar}$ ages in the range $17-25 \mathrm{Ma} .{ }^{23}{ }^{24}$ If we run the $\mathrm{Rb} / \mathrm{Sr}$ ratios ${ }^{25}$ through Isoplot we see that the average age is 43 million years. [Table 9]

Rb/Sr Ages Summary	
Average	$\mathbf{4 3}$
Maximum	$\mathbf{1 , 2 5 8}$
Minimum	$\mathbf{- 1 , 4 3 9}$
Difference	$\mathbf{2 , 6 9 7}$
Table 9	

If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{26}$ through Isoplot we see that the average age is 78,808 million years. [Table 10]
Pb/Th Ages Summary

Maximum	Minimum	Difference	Average
99,275	$\mathbf{6 7 , 7 0 4}$	$\mathbf{3 1 , 5 7 0}$	$\mathbf{7 8 , 8 0 8}$

Table 10

In Table 11 we see a comparison between the model age ["True Age"] and the isotopic age derived from atomic ratios. We can see how far in error the Thorium dating system is.

208Pb/232Th Ages

Age	Model Age
68,343	43
67,704	43
70,277	43
71,706	43
95,541	43
99,275	43

Table 11

Continental Lithospheric Contribution to Alkaline

According to the article: "These two genetically related alkaline complexes were emplaced at the east Atlantic continent-ocean boundary during the Upper Cretaceous, i.e. 66-72 m. y. ago" ${ }^{27}$ If we run the $\mathrm{Rb} / \mathrm{Sr}$ ratios ${ }^{28}$ through Isoplot we see that the average age is 65 million years. [Table 9]

Rb/Sr Ages Summary

Average	65
Maximum	$\mathbf{7 4}$
Minimum	4
Difference	78

Table 12
If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{28}$ through Isoplot we see that the average age is 6,126 million years. [Table 13]

Pb/Th Ages Summary

Maximum	Minimum	Difference	Average
$\mathbf{1 0 , 0 8 4}$	$\mathbf{2 , 6 1 6}$	$\mathbf{7 , 4 6 7}$	$\mathbf{6 , 1 2 6}$

Table 13

208Pb/232Th Ages

Age	Model Age
208Pb/232Th	Million Years
$\mathbf{1 0 , 0 8 4}$	66
9,320	66
8,101	66
7,502	66
7,080	66
6,891	66
6,655	66
6,313	66
5,830	66
5,755	66
5,029	66

Table 14

Pin Pricking The Elephant

According to tables ${ }^{29}$ in the article, the rock formation is only 120 million years old. If we run the ${ }^{207} \mathrm{~Pb}{ }^{206} \mathrm{~Pb}$ ratios ${ }^{30}$ through Isoplot we get an average age of 5,000 million years. If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{31}$ through Isoplot we see in Table 15 that the age is between 12 billion and 14 billion years old.

208Pb/232Th Ages			
Pb/Pb Age	$\mathbf{5 , 3 7 9}$	$\mathbf{5 , 3 8 5}$	$\mathbf{5 , 0 0 0}$
$\mathrm{Pb} /$ Th Age	$\mathbf{1 2 , 0 9 0}$	$\mathbf{1 2 , 8 4 5}$	$\mathbf{1 4 , 4 5 9}$
$\mathbf{P b} / \mathrm{U}$ Age	4,579	5,498	$\mathbf{6 , 9 3 6}$

Table 15

Chronology And Geochemistry Of Lavas

According to the article: "New $\left.{ }^{40} \mathrm{Ar}\right)^{39} \mathrm{Ar}$ incremental heating age determinations for dredged rocks from volcanoes east of Salas y Gomez Island show that, with very few exceptions, ages increase steadily to the east from 1.4 to $30 \mathrm{Ma}{ }^{32}$ Tables ${ }^{33}$ in the article affirms this as the true age of the geological formation. ${ }^{33}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{34}$ through Isoplot we see that the average age is 8,325 million years. [Table 16] In Table 17 we see some of the incredible dates all the way from 5 billion to almost 24 billion years old.

$\mathrm{Pb} / \mathrm{Th}$ Ages Summary

Chronology	207Pb/206Pb	206Pb/238U	208Pb/232Th
Summary	Age	Age	Age
Average	$\mathbf{4 , 9 1 9}$	$\mathbf{3 , 6 9 4}$	$\mathbf{8 , 3 2 5}$
Maximum	$\mathbf{4 , 9 7 1}$	$\mathbf{9 , 6 4 5}$	$\mathbf{2 3 , 8 5 0}$
Minimum	$\mathbf{4 , 8 8 1}$	$\mathbf{1 , 1 6 6}$	$\mathbf{4 , 1 2 9}$
Difference	$\mathbf{9 0}$	$\mathbf{8 , 4 7 9}$	$\mathbf{1 9 , 7 2 0}$

Thorium/Lead - Maximum Ages

Age	Age
$\mathbf{2 3 , 8 5 0}$	$\mathbf{6 , 4 9 8}$
$\mathbf{1 6 , 9 4 2}$	$\mathbf{6 , 4 2 1}$
$\mathbf{1 5 , 3 6 4}$	$\mathbf{6 , 3 9 6}$
$\mathbf{1 3 , 0 0 4}$	$\mathbf{6 , 2 9 8}$
$\mathbf{9 , 0 6 1}$	$\mathbf{6 , 2 4 5}$
$\mathbf{8 , 3 9 3}$	$\mathbf{5 , 8 9 6}$
$\mathbf{7 , 6 5 4}$	$\mathbf{5 , 8 4 8}$
$\mathbf{7 , 5 9 9}$	$\mathbf{5 , 7 5 4}$
$\mathbf{7 , 1 0 1}$	$\mathbf{5 , 4 5 3}$
$\mathbf{7 , 0 5 4}$	$\mathbf{5 , 4 4 6}$
$\mathbf{6 , 6 0 7}$	

Table 17

Ion Microprobe U-Th-Pb Dating

According to the article: "The formation age of this meteorite is $1.53 \pm 0.46 \mathrm{Ga}$. On the other hand, the data of nine apatite grains from Lafayette are well represented by planar regression rather than linear regression, indicating that its formation age is $1.15 \pm 0.34 \mathrm{Ga}{ }^{35}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{36}$ through Isoplot we see that the average age is 20,409 million years. [Table 18] In Table 19 we see some of the incredible dates all the way from 7 billion to over 40 billion years old.

Uranium/Thorium/Lead - Ages Summary

Chronological	238U/206Pb	Th232/Pb208	Pb207/Pb206
Summary	Age	Age	Age
Average	4,416	20,409	4,768
Maximum	$\mathbf{8 , 9 7 5}$	40,271	5,348
Minimum	$\mathbf{1 , 2 4 5}$	7,426	3,897
Standard Dev	$\mathbf{2 , 0 2 3}$	$\mathbf{9 , 1 0 1}$	$\mathbf{3 3 7}$

Table 18

Thorium/Lead - Maximum Ages

Age	Age
40,271	17,062
38,926	16,516
29,016	15,349
28,642	13,929
26,241	13,153
24,801	12,380
23,510	11,689
21,169	11,334
18,374	7,426
17,980	

Table 18

U-Th-Pb Dating Of Secondary Minerals

This dating was done in 2008 on minerals from Yucca Mountain, Nevada. It was done by scientists from the U.S. Geological Survey, Denver, Colorado, the Geological Survey of Canada, Ottawa, Ontario and the Research School of Earth Sciences and Planetary Science Institute, The Australian National University. According to the article: "Most ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ages determined for the calcite subsamples are much older than the $12.8-\mathrm{Ma}$ age of the host tuff (Table 3 and Fig. 5) and thus unreasonable." ${ }^{37}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{38}$ through Isoplot we see that the average age is 10,000 million years [Table 19]. The $\mathrm{Rb} / \mathrm{Sr}$ ratios ${ }^{39}$ gave a uniform result of 11 to 13 million years old [Table 19].
$\underline{\underline{\text { 208Pb/232Th Ages Versus Rb/Sr Ages }}}$

Chronological	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summary	Age	Age	Age	Age
Average	$\mathbf{3 , 4 5 9}$	4,891	9,984	12
Maximum	$\mathbf{8 , 1 2 6}$	31,193	352,962	13
Minimum	-445	1	2	11
Difference	$\mathbf{8 , 5 7 1}$	$\mathbf{3 1 , 1 9 2}$	352,960	2

Table 19
Another set of dates ${ }^{40}$ in the essay [Table 20] give dates as high as 82 billion years old.
Uranium/Thorium/Lead - Ages Summary

Summary	${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$	${ }^{207} \mathrm{~Pb} /{ }^{235} \mathrm{U}$	${ }^{208} \mathrm{~Pb} /{ }^{232} \mathrm{Th}$
Average	$\mathbf{1 , 5 4 0}$	46	$\mathbf{7 , 6 8 7}$
Maximum	$\mathbf{2 0 , 2 0 9}$	486	$\mathbf{8 2 , 0 3 0}$

Minimum	1	0	3
Difference	$\mathbf{2 0 , 2 0 8}$	486	$\mathbf{8 2 , 0 2 7}$
Table 20			

The Influence of High U-Th Inclusions

This dating was done in 1998 by scientists from Zurich, Switzerland. According to the article: "The U-Th-Pb data from the bulk dissolutions are highly complex and yield apparent ages ranging from 1000 Ma to 30 Ma ." ${ }^{41}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{42}$ through Isoplot we see that the dates vary from 300 to over 14,000 million years old [Table 21].

Uranium/Thorium/Lead - Ages Summary

Dating	206Pb/238U	208Pb/232Th	Pb207/Pb206
Summary	Age	Age	Ages
Average	$\mathbf{5 , 3 4 2}$	$\mathbf{3 , 5 7 9}$	$\mathbf{4 , 7 0 9}$
Maximum	$\mathbf{2 9 , 0 4 0}$	$\mathbf{1 4 , 3 1 6}$	$\mathbf{5 , 0 0 0}$
Minimum	$\mathbf{2 7 0}$	$\mathbf{2 8 8}$	$\mathbf{3 , 9 2 4}$
Std Deviation	$\mathbf{9 , 0 4 2}$	$\mathbf{5 , 1 9 2}$	$\mathbf{3 6 8}$

Table 21

If we run another set of $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{43}$ through Isoplot we see that the dates vary from 160 to over 37,000 million years old [Table 22].

Uranium/Thorium/Lead - Ages Summary

Dating	206Pb/238U	208Pb/232Th	Pb207/Pb206
Summary	Age	Age	Ages
Average	1,621	$\mathbf{4 , 0 8 4}$	$\mathbf{4 , 1 8 0}$
Maximum	14,008	37,154	$\mathbf{5 , 0 4 2}$
Minimum	177	161	1,325
Std Deviation	3,931	11,000	$\mathbf{1 , 3 8 6}$
Table 22			

U, Th And Pb Isotope Compositions

These samples were dated in 2009 by scientists from the Arthur Holmes Isotope Geology Laboratory, Department of Earth Sciences, Durham University. ${ }^{44}$ According to the article: "Detailed petrographic and geochemical descriptions of the samples presented here can be found elsewhere" ${ }^{45}$ If we examine what these other people ${ }^{46-49}$ have said about the same rock formation the consensus is that it is three million years old.
If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{50}$ through Isoplot we see that the dates vary from 2,000 to over 92,000 million years old [Table 23].

Uranium/Thorium/Lead - Ages Summary

Dating	232Th/208Pb	238U/206Pb	207Pb/206Pb
Summary	Age	Age	Age
Average	$\mathbf{8 , 0 9 7}$	$\mathbf{4 , 2 7 1}$	$\mathbf{4 , 9 1 5}$
Maximum	$\mathbf{9 2 , 4 9 5}$	$\mathbf{1 8 , 6 3 9}$	$\mathbf{5 , 0 0 8}$
Minimum	$\mathbf{1 , 9 3 9}$	$\mathbf{1 , 4 3 7}$	$\mathbf{4 , 8 7 1}$
Difference	$\mathbf{9 0 , 5 5 6}$	$\mathbf{1 7 , 2 0 2}$	$\mathbf{1 3 7}$

Table 23

Uranium/Thorium/Lead - Maximum Ages			
232Th/208Pb	238U/206Pb	207Pb/206Pb	
Age	Age	Age	
92,495	$\mathbf{1 8 , 6 3 9}$	$\mathbf{5 , 0 0 8}$	
73,503	$\mathbf{1 5 , 3 0 7}$	$\mathbf{5 , 0 0 1}$	
42,038	$\mathbf{1 0 , 7 7 2}$	$\mathbf{5 , 0 0 0}$	
29,253	$\mathbf{1 0 , 3 1 2}$	$\mathbf{4 , 9 9 6}$	
13,018	$\mathbf{9 , 2 9 1}$	$\mathbf{4 , 9 8 4}$	
10,956	$\mathbf{5 , 6 2 5}$	$\mathbf{4 , 9 6 4}$	
10,621	$\mathbf{4 , 5 0 8}$	$\mathbf{4 , 9 5 9}$	
10,022	$\mathbf{3 , 7 6 7}$	$\mathbf{4 , 9 4 9}$	
Table 24			

U-Th-Pb Isotope Data

According to the article: "In contrast to the apparent ${ }^{207} \mathrm{~Pb}-{ }^{206} \mathrm{~Pb}$ ages, the minimum depositional age of the Warrawoona Group is $3,426 \mathrm{Ma}$ based on a $\mathrm{U}-\mathrm{Pb}$ zircon age from the Panorama Formation." ${ }^{51}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{52}$ through Isoplot we see that the dates vary from 25,000 to over 100,000 million years old [Table 25]. In Table 26 we can see the maximum ages for each dating method.

Uranium/Thorium/Lead - Ages Summary

Dating	207Pb/206Pb	206/Pb/238U	208Pb/232Th
Summary	Age	Age	Age
Average	5,325	$\mathbf{1 5 , 1 9 2}$	56,976
Maximum	5,403	$\mathbf{3 1 , 0 0 5}$	$\mathbf{1 0 0 , 6 0 1}$
Minimum	5,222	$\mathbf{7 , 1 3 8}$	$\mathbf{2 4 , 9 8 0}$
Std Deviation	52	$\mathbf{6 , 4 2 1}$	$\mathbf{2 2 , 4 1 7}$

Table 25

Uranium/Thorium/Lead - Maximum Ages

207Pb/206Pb	206Pb/238U	208Pb/232Th
Age	Age	Age
5403	$\mathbf{3 1 , 0 0 5}$	$\mathbf{1 0 0 , 6 0 1}$
5395	20,343	$\mathbf{8 4 , 4 5 7}$
5390	19,584	$\mathbf{7 3 , 9 6 8}$
5351	17,306	$\mathbf{6 7 , 4 2 3}$
5339	17,088	$\mathbf{5 8 , 3 5 3}$
5332	13,410	$\mathbf{5 7 , 1 1 6}$
5328	13,022	55,311
5315	11,479	51,607
5298	11,353	44,439
5296	$\mathbf{1 0 , 6 5 2}$	$\mathbf{3 9 , 0 9 0}$
5289	9,926	26,361
5269	$\mathbf{7 , 1 3 8}$	24,980

Table 26

Evolution Of Reunion Hotspot Mantle

According to the article: "In the same context, the Trend 1 data imply that (1) the isotopic composition of the Reunion end-member has changed relatively little in the last $66 \mathrm{~m} . \mathrm{y}$." ${ }^{53}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{54}$ through Isoplot we see that the dates vary from 5,000 to over 13,000 million years old [Table 27]. In Table 28 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary

Dating	238U/206Pb	232Th/208Pb	207Pb/206Pb
Summary	Age	Age	Age
Average	$\mathbf{4 , 4 4 9}$	$\mathbf{8 , 0 7 9}$	$\mathbf{4 , 9 7 6}$
Maximum	$\mathbf{6 , 2 8 5}$	$\mathbf{1 3 , 2 8 7}$	$\mathbf{5 , 0 1 6}$
Minimum	$\mathbf{3 , 0 1 0}$	$\mathbf{5 , 6 4 1}$	$\mathbf{4 , 9 5 3}$
Std Deviation	$\mathbf{9 1 6}$	$\mathbf{2 , 0 8 6}$	$\mathbf{1 8}$

Table 27

Thorium/Lead - Maximum Ages

Age	Age	Age	Age
$\mathbf{1 3 , 2 8 7}$	$\mathbf{8 , 7 2 5}$	$\mathbf{7 , 3 6 3}$	$\mathbf{6 , 5 4 0}$
$\mathbf{1 1 , 8 3 2}$	$\mathbf{8 , 6 0 9}$	$\mathbf{7 , 3 6 2}$	$\mathbf{6 , 4 7 9}$
$\mathbf{1 1 , 0 1 7}$	$\mathbf{7 , 5 4 1}$	$\mathbf{7 , 0 8 0}$	$\mathbf{6 , 3 2 3}$
$\mathbf{1 0 , 3 5 7}$	$\mathbf{7 , 5 1 7}$	$\mathbf{7 , 0 1 7}$	$\mathbf{5 , 6 6 0}$
$\mathbf{9 , 1 0 1}$	$\mathbf{7 , 4 4 6}$	$\mathbf{6 , 6 7 9}$	$\mathbf{5 , 6 4 1}$

Table 28

Continental Growth 3.2 Gyr Ago

According to the article the rock formation is 3,200 million years old. ${ }^{55}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{55}$ through Isoplot we see that the dates vary from negative 24,000 to over 11,000 million years old [Table 29]. In Table 30 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary

Summary	$208 \mathrm{~Pb} / 232 \mathrm{Th}$	$238 \mathrm{U} / 206 \mathrm{~Pb}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$
Average	$\mathbf{3 , 2 7 3}$	$\mathbf{3 , 3 0 0}$	$\mathbf{3 , 2 9 6}$
Maximum	$\mathbf{1 1 , 5 1 7}$	$\mathbf{4 , 4 6 3}$	$\mathbf{3 , 8 9 7}$
Minimum	$\mathbf{- 2 4 , 2 9 5}$	$\mathbf{1 , 5 6 0}$	$\mathbf{2 , 6 6 7}$
Difference	$\mathbf{3 5 , 8 1 3}$	$\mathbf{2 , 9 0 2}$	$\mathbf{1 , 2 2 9}$

Table 29
Thorium/Lead - Maximum Ages

Age	Age	Age	Age	Age
$\mathbf{1 1 , 5 1 7}$	$\mathbf{5 , 3 2 2}$	$\mathbf{5 , 0 8 3}$	$\mathbf{4 , 6 6 8}$	$\mathbf{4 , 6 0 1}$
$\mathbf{6 , 0 2 7}$	$\mathbf{5 , 2 8 9}$	$\mathbf{4 , 7 7 6}$	$\mathbf{4 , 6 6 2}$	$\mathbf{- 3 6 6}$
$\mathbf{5 , 8 0 6}$	$\mathbf{5 , 1 3 0}$	$\mathbf{4 , 7 0 9}$	$\mathbf{4 , 6 3 8}$	$\mathbf{- 2 , 4 8 5}$
5,704	$\mathbf{5 , 0 9 5}$	$\mathbf{4 , 7 0 4}$	$\mathbf{4 , 6 1 4}$	$\mathbf{- 2 4 , 2 9 5}$
5,568	$\mathbf{5 , 0 8 5}$	$\mathbf{4 , 6 9 0}$	$\mathbf{4 , 6 1 0}$	$\mathbf{- 2 4 , 2 9 5}$
Table 30				

Table 30

Uranium-Lead Zircon Ages

If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{56}$ through Isoplot we see that the dates vary from 6,000 to over 55,000 million years old [Table 31]. In Table 32 we can see the maximum ages for each dating method.

Uranium/Thorium/Lead - Ages Summary

Dating	206Pb/238U	208Pb/232Th	207Pb/206Pb
Summary	Age	Age	Age
Average	11,159	17,193	4,933
Maximum	23,421	55,110	4,997
Minimum	3,108	6,130	4,799
Std Deviation	6,223	13,524	59

Table 31

Uranium/Thorium/Lead - Maximum Ages

206Pb/238U	208Pb/232Th	207Pb/206Pb
Age	Age	Age
$\mathbf{2 3 , 4 2 1}$	$\mathbf{5 5 , 1 1 0}$	$\mathbf{4 , 9 9 7}$
$\mathbf{2 0 , 3 8 7}$	$\mathbf{2 9 , 7 4 2}$	$\mathbf{4 , 9 9 1}$
$\mathbf{1 8 , 9 0 9}$	$\mathbf{2 7 , 8 8 9}$	$\mathbf{4 , 9 8 1}$
$\mathbf{1 7 , 1 4 3}$	$\mathbf{2 7 , 0 5 1}$	$\mathbf{4 , 9 7 6}$
$\mathbf{1 6 , 7 8 4}$	$\mathbf{2 1 , 3 1 8}$	$\mathbf{4 , 9 7 2}$
$\mathbf{1 5 , 3 2 0}$	$\mathbf{1 9 , 2 2 4}$	$\mathbf{4 , 9 6 9}$
$\mathbf{1 2 , 8 5 1}$	$\mathbf{1 8 , 0 9 1}$	$\mathbf{4 , 9 6 5}$
$\mathbf{1 2 , 0 1 2}$	$\mathbf{1 7 , 9 4 4}$	$\mathbf{4 , 9 5 7}$
$\mathbf{1 0 , 5 7 9}$	$\mathbf{1 6 , 4 7 4}$	$\mathbf{4 , 9 5 3}$
$\mathbf{9 , 6 7 7}$	$\mathbf{1 5 , 0 5 9}$	$\mathbf{4 , 9 4 9}$
$\mathbf{9 , 4 2 4}$	$\mathbf{1 4 , 7 7 9}$	$\mathbf{4 , 9 4 7}$
$\mathbf{9 , 0 9 9}$	$\mathbf{1 3 , 3 7 4}$	$\mathbf{4 , 9 4 5}$
$\mathbf{9 , 0 4 4}$	$\mathbf{1 1 , 9 5 1}$	$\mathbf{4 , 9 2 5}$
$\mathbf{8 , 0 9 4}$	$\mathbf{1 0 , 7 8 3}$	$\mathbf{4 , 9 2 1}$
$\mathbf{6 , 7 7 6}$	$\mathbf{9 , 3 3 6}$	$\mathbf{4 , 9 1 5}$
$\mathbf{5 , 7 1 9}$	$\mathbf{8 , 6 4 4}$	$\mathbf{4 , 9 1 0}$
$\mathbf{5 , 5 0 0}$	$\mathbf{8 , 0 5 8}$	$\mathbf{4 , 8 9 2}$

Table 32

Thorium/Lead - Maximum Ages

Age	Age	Age	Age
55,110	19,224	14,779	$\mathbf{8 , 6 4 4}$
29,742	18,091	13,374	$\mathbf{8 , 0 5 8}$
27,889	17,944	11,951	$\mathbf{6 , 7 2 1}$
27,051	$\mathbf{1 6 , 4 7 4}$	$\mathbf{1 0 , 7 8 3}$	$\mathbf{6 , 1 8 5}$
21,318	$\mathbf{1 5 , 0 5 9}$	$\mathbf{9 , 3 3 6}$	$\mathbf{6 , 1 3 0}$

Table 33

The Pilbara Craton in Western Australia

According to the article the rock formation is 3,200 million years old. ${ }^{57}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{58}$ through Isoplot we see that the dates vary from 2,000 to over 8,000 million years old [Table 34]. In Table 35 we can see the maximum ages for the Thorium/Lead dating method.

Thorium/Lead - Ages Summary

Average	$\mathbf{4 , 8 5 3}$
Maximum	$\mathbf{8 , 7 2 8}$
Minimum	$\mathbf{2 , 7 9 2}$
Std Deviation	$\mathbf{1 , 0 4 0}$

Table 34
Thorium/Lead - Maximum Ages

Age	Age	Age	Age	Age
$\mathbf{8 , 7 2 8}$	$\mathbf{6 , 2 4 1}$	$\mathbf{5 , 7 2 1}$	$\mathbf{5 , 4 3 0}$	$\mathbf{5 , 0 5 8}$
$\mathbf{8 , 2 9 6}$	$\mathbf{6 , 1 9 1}$	$\mathbf{5 , 6 4 3}$	$\mathbf{5 , 4 1 7}$	$\mathbf{5 , 0 4 2}$
$\mathbf{7 , 0 1 7}$	$\mathbf{6 , 0 7 6}$	$\mathbf{5 , 5 7 8}$	$\mathbf{5 , 2 8 8}$	$\mathbf{5 , 0 3 2}$
$\mathbf{6 , 4 3 3}$	$\mathbf{5 , 7 8 6}$	$\mathbf{5 , 5 3 3}$	$\mathbf{5 , 1 7 1}$	$\mathbf{5 , 0 2 7}$
$\mathbf{6 , 4 3 1}$	$\mathbf{5 , 7 5 9}$	$\mathbf{5 , 5 2 2}$	$\mathbf{5 , 1 3 8}$	$\mathbf{4 , 9 9 9}$

Table 35

If we run another set of $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{59}$ through Isoplot we see that the dates vary from 500 to over 17,000 million years old [Table 36]. In Table 37 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary

Dating	207Pb/235U	206Pb/238U	208Pb/232Th
Summary	Age	Age	Age
Average	$\mathbf{2 , 9 5 5}$	$\mathbf{2 , 9 5 6}$	$\mathbf{6 , 2 8 6}$
Maximum	$\mathbf{4 , 2 2 0}$	$\mathbf{8 , 0 7 3}$	$\mathbf{1 7 , 5 0 0}$
Minimum	$\mathbf{1 , 9 2 1}$	$\mathbf{1 , 0 7 4}$	$\mathbf{5 3 5}$
Std Deviation	$\mathbf{3 9 2}$	$\mathbf{1 , 0 1 9}$	$\mathbf{3 , 1 9 6}$

Table 36

Thorium/Lead - Maximum Ages

thorium/Lead - Maximum Ages			
Age	Age	Age	Age
$\mathbf{1 7 , 5 0 0}$	$\mathbf{8 , 8 9 1}$	$\mathbf{7 , 4 9 3}$	$\mathbf{5 , 7 4 3}$
$\mathbf{1 3 , 2 5 9}$	$\mathbf{8 , 7 6 8}$	$\mathbf{7 , 4 4 3}$	$\mathbf{5 , 5 9 4}$
$\mathbf{1 3 , 1 0 0}$	$\mathbf{8 , 6 8 9}$	$\mathbf{7 , 3 6 8}$	$\mathbf{5 , 5 1 2}$
$\mathbf{1 2 , 8 2 1}$	$\mathbf{8 , 3 4 3}$	$\mathbf{7 , 3 4 3}$	$\mathbf{5 , 5 1 2}$
$\mathbf{1 2 , 6 6 2}$	$\mathbf{8 , 3 2 0}$	$\mathbf{7 , 2 4 0}$	$\mathbf{5 , 4 5 5}$
$\mathbf{1 2 , 2 1 2}$	$\mathbf{8 , 2 4 7}$	$\mathbf{7 , 1 9 2}$	$\mathbf{5 , 4 3 2}$
$\mathbf{1 1 , 1 6 3}$	$\mathbf{8 , 2 3 2}$	$\mathbf{7 , 1 4 8}$	$\mathbf{5 , 2 5 5}$
$\mathbf{1 0 , 9 5 9}$	$\mathbf{8 , 1 9 7}$	$\mathbf{7 , 0 4 7}$	$\mathbf{5 , 2 5 3}$
$\mathbf{1 0 , 7 8 3}$	$\mathbf{8 , 0 6 4}$	$\mathbf{6 , 4 7 8}$	$\mathbf{5 , 2 2 9}$
$\mathbf{1 0 , 6 6 8}$	$\mathbf{8 , 0 1 3}$	$\mathbf{6 , 2 7 0}$	$\mathbf{5 , 1 5 4}$
$\mathbf{1 0 , 3 8 4}$	$\mathbf{7 , 9 4 9}$	$\mathbf{6 , 1 9 9}$	$\mathbf{5 , 1 4 8}$
$\mathbf{9 , 9 4 5}$	$\mathbf{7 , 9 4 7}$	$\mathbf{6 , 1 5 2}$	$\mathbf{5 , 1 3 5}$
$\mathbf{9 , 5 8 0}$	$\mathbf{7 , 8 6 1}$	$\mathbf{6 , 0 8 3}$	$\mathbf{5 , 1 1 5}$
$\mathbf{9 , 1 2 4}$	$\mathbf{7 , 7 0 2}$	$\mathbf{6 , 0 5 2}$	$\mathbf{5 , 0 4 7}$
$\mathbf{8 , 9 0 8}$	$\mathbf{7 , 6 9 2}$	$\mathbf{5 , 8 8 5}$	$\mathbf{5 , 0 3 3}$
$\mathbf{8 , 9 0 5}$	$\mathbf{7 , 6 1 2}$	$\mathbf{5 , 8 0 3}$	$\mathbf{4 , 8 8 9}$

Table 37

Timing of Sedimentation, Metamorphism, and Plutonism

According to the article the rock formation is 478 million years old. ${ }^{60}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{61}$ through Isoplot we see that the dates vary from 500 to over 80,000 million years old [Table 38]. In Table 39 we can see the maximum ages for the Thorium/Lead dating method.

Thorium/Lead - Ages Summary

Average	$\mathbf{1 9 , 5 3 9}$
Maximum	$\mathbf{8 0 , 5 3 2}$
Minimum	$\mathbf{4 8 9}$
Std Deviation	$\mathbf{2 7 , 2 6 0}$

Table 38
Thorium/Lead - Maximum Ages

Age	Age	Age	Age
$\mathbf{8 0 , 5 3 2}$	$\mathbf{6 6 , 4 4 8}$	$\mathbf{5 1 , 8 7 9}$	$\mathbf{2 4 , 6 0 4}$
$\mathbf{7 4 , 0 1 6}$	$\mathbf{6 5 , 0 7 6}$	$\mathbf{5 1 , 7 5 1}$	$\mathbf{1 6 , 8 0 9}$
$\mathbf{7 0 , 7 1 3}$	$\mathbf{6 5 , 0 0 0}$	$\mathbf{5 1 , 5 4 5}$	$\mathbf{1 5 , 7 4 8}$
$\mathbf{6 9 , 0 5 7}$	$\mathbf{6 1 , 3 4 2}$	$\mathbf{3 4 , 7 6 6}$	$\mathbf{1 5 , 3 6 5}$
$\mathbf{6 8 , 8 3 1}$	$\mathbf{6 0 , 3 3 5}$	$\mathbf{3 1 , 0 4 5}$	$\mathbf{1 3 , 3 8 4}$
$\mathbf{6 8 , 5 0 3}$	$\mathbf{5 8 , 3 6 4}$	$\mathbf{2 8 , 3 9 7}$	$\mathbf{1 1 , 9 4 5}$
$\mathbf{6 7 , 6 7 2}$	$\mathbf{5 6 , 7 9 2}$	$\mathbf{2 4 , 7 3 3}$	$\mathbf{9 , 4 7 7}$

Table 39

U-Th and U-Pb Systematics in Zircons

According to the article: "At Taupo, the zircon model ages range from <20 ka to $>500 \mathrm{Ma}$. ." ${ }^{62}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{63}$ through Isoplot we see that the dates vary from 11,000 to over 41,000 million years old [Table 40]. In Table 41 we can see the maximum ages for the Thorium/Lead dating method.
Thorium/Lead - Ages Summary

Average	$\mathbf{2 2 , 8 4 7}$
Maximum	$\mathbf{4 1 , 4 6 0}$
Minimum	$\mathbf{1 1 , 3 9 0}$
Std Deviation	$\mathbf{6 , 1 9 1}$

Table 40
Thorium/Lead - Maximum Ages

Age	Age	Age	Age	Age
41,460	26,447	23,441	21,348	$\mathbf{1 8 , 5 3 4}$
$\mathbf{3 4 , 8 2 4}$	25,988	23,025	20,730	$\mathbf{1 8 , 1 4 0}$
$\mathbf{3 3 , 3 9 2}$	$\mathbf{2 5 , 5 2 5}$	$\mathbf{2 2 , 7 0 4}$	$\mathbf{1 9 , 9 7 7}$	$\mathbf{1 7 , 7 0 1}$
29,182	24,858	22,560	$\mathbf{1 9 , 9 5 0}$	$\mathbf{1 7 , 3 5 7}$
29,126	24,325	$\mathbf{2 2 , 4 9 3}$	$\mathbf{1 9 , 7 3 8}$	$\mathbf{1 6 , 4 5 5}$
28,671	24,160	22,138	$\mathbf{1 9 , 4 2 2}$	$\mathbf{1 6 , 2 2 1}$
27,733	23,992	21,885	$\mathbf{1 9 , 3 6 0}$	$\mathbf{1 5 , 7 2 6}$
27,587	23,665	21,877	$\mathbf{1 9 , 3 0 7}$	$\mathbf{1 5 , 3 0 1}$
26,533	23,448	21,390	$\mathbf{1 9 , 0 2 4}$	$\mathbf{1 1 , 3 9 0}$

Table 41

Hydrothermal Zebra Dolomite

According to the article the rock formation is 416 million years old. ${ }^{64}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{65}$ through Isoplot we see that the dates vary from 6,000 to over 55,000 million years old [Table 42]. In Table 43 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary

Dating	Pb206/U238	Pb208/Th232	Pb207/Pb206
Summary	Age	Age	Age
Average	$\mathbf{1 1 , 3 5 3}$	$\mathbf{1 7 , 1 9 3}$	$\mathbf{4 , 9 3 3}$
Maximum	$\mathbf{2 3 , 4 2 1}$	$\mathbf{5 5 , 1 1 0}$	$\mathbf{4 , 9 9 7}$
Minimum	$\mathbf{1 , 7 1 5}$	$\mathbf{6 , 1 3 0}$	$\mathbf{4 , 7 9 9}$
Std Deviation	$\mathbf{5 , 0 5 5}$	$\mathbf{1 1 , 4 5 9}$	$\mathbf{5 3}$

Table 42

Thorium/Lead - Maximum Ages

Age	Age
$\mathbf{5 5 , 1 1 0}$	$\mathbf{1 4 , 7 7 9}$
29,742	$\mathbf{1 3 , 3 7 4}$
27,889	$\mathbf{1 1 , 9 5 1}$
27,051	$\mathbf{1 0 , 7 8 3}$
21,318	$\mathbf{9 , 3 3 6}$
19,224	$\mathbf{8 , 6 4 4}$
18,091	$\mathbf{8 , 0 5 8}$
$\mathbf{1 7 , 9 4 4}$	$\mathbf{6 , 7 2 1}$
16,474	$\mathbf{6 , 1 8 5}$
$\mathbf{1 5 , 0 5 9}$	$\mathbf{6 , 1 3 0}$

Table 43

If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{65}$ in the second spreadsheet table through Isoplot we see that the dates vary from 6,000 to over 270,000 million years old [Table 44]. In Table 45 we can see the maximum ages for the Thorium/Lead dating method.

Thorium/Lead - Ages Summary

Average	$\mathbf{9 0 , 6 9 0}$
Maximum	277,727
Minimum	$\mathbf{6 , 6 4 3}$
Std Deviation	$\mathbf{4 7 , 2 0 9}$
Table 44	

Thorium/Lead - Maximum Ages

Billion Years	Quantity	Billion Years	Quantity
0 To 20	2	130 To 140	6
20 To 30	1	140 To 150	6
30 To 40	22	150 To 160	2
40 To 50	19	160 To 170	6
50 To 60	33	170 To 180	1
60 To 70	17	180 To 190	5
70 To 80	23	190 To 200	1
80 To 90	18	200 To 210	3
90 To 100	14	210 To 220	1
100 To 110	18	220 To 230	2
110 To 120	21	240 To 250	1
120 To 130	13	270 To 280	2

Table 45

Origin of Indian Ocean Seamount Province

According to the article the rock formation is 6 million years old. ${ }^{66}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{67}$ through Isoplot we see that the dates vary from 2,000 to over 28,000 million years old [Table 46]. In Table 47 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary

Dating	207Pb/206Pb	206Pb/238U	208Pb/232Th
Summary	Age	Age	Age
Average	5,015	5,191	7,740
Maximum	5,087	18,210	28,677
Minimum	4,921	890	$\mathbf{1 , 9 4 3}$
Std Deviation	48	3,634	4,590

Table 46

Thorium/Lead - Maximum Ages

Age	Age	Age	Age	Age
$\mathbf{2 8 , 6 7 7}$	$\mathbf{1 0 , 7 1 9}$	$\mathbf{9 , 5 1 5}$	$\mathbf{7 , 9 2 3}$	$\mathbf{6 , 5 1 2}$
$\mathbf{1 2 , 8 2 9}$	$\mathbf{1 0 , 6 2 6}$	$\mathbf{9 , 5 0 6}$	$\mathbf{7 , 6 6 9}$	$\mathbf{6 , 3 3 3}$
$\mathbf{1 2 , 0 2 8}$	$\mathbf{1 0 , 4 2 5}$	$\mathbf{9 , 1 4 6}$	$\mathbf{7 , 4 0 7}$	$\mathbf{6 , 1 9 9}$
$\mathbf{1 1 , 7 9 8}$	$\mathbf{1 0 , 3 7 8}$	$\mathbf{9 , 0 7 3}$	$\mathbf{7 , 3 8 0}$	$\mathbf{6 , 1 9 8}$
$\mathbf{1 1 , 5 5 2}$	$\mathbf{1 0 , 2 4 0}$	$\mathbf{9 , 0 1 9}$	$\mathbf{7 , 3 8 0}$	$\mathbf{6 , 0 8 5}$
$\mathbf{1 1 , 3 1 7}$	$\mathbf{1 0 , 2 0 1}$	$\mathbf{8 , 9 1 6}$	$\mathbf{7 , 3 6 7}$	$\mathbf{6 , 0 5 1}$
$\mathbf{1 1 , 1 1 3}$	$\mathbf{1 0 , 0 8 2}$	$\mathbf{8 , 2 9 8}$	$\mathbf{7 , 0 3 0}$	$\mathbf{5 , 9 9 9}$
$\mathbf{1 0 , 7 7 3}$	$\mathbf{1 0 , 0 5 5}$	$\mathbf{8 , 1 1 1}$	$\mathbf{6 , 9 1 0}$	$\mathbf{5 , 4 9 3}$
$\mathbf{1 0 , 7 2 5}$	$\mathbf{9 , 6 7 8}$	$\mathbf{8 , 0 0 1}$	$\mathbf{6 , 6 5 1}$	$\mathbf{5 , 4 1 8}$

Table 47

Geochemistry Geophysics Geosystems

According to the article the rock formation is 100 million years old. ${ }^{68}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{68}$ through Isoplot we see that the dates vary from 5,000 to over 82,000 million years old [Table 48]. In Table 49 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary				
Dating	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th
Summary	Age	Age	Age	Age
Average	$\mathbf{1 5 , 3 4 5}$	$\mathbf{7 , 0 1 9}$	$\mathbf{4 , 9 3 6}$	$\mathbf{3 9 , 0 6 8}$
Maximum	$\mathbf{3 8 , 3 4 0}$	$\mathbf{1 0 , 8 7 2}$	5,043	$\mathbf{8 2 , 8 6 5}$
Minimum	$\mathbf{3 , 1 2 5}$	$\mathbf{4 , 3 8 5}$	$\mathbf{4 , 7 6 0}$	$\mathbf{5 , 5 7 7}$
Std Deviation	$\mathbf{9 , 6 5 7}$	$\mathbf{1 , 7 5 0}$	$\mathbf{6 3}$	$\mathbf{2 7 , 3 9 0}$
Table 48				

Table 48
Thorium/Lead - Maximum Ages

Age	Age	Age
$\mathbf{8 2 , 8 6 5}$	$\mathbf{5 1 , 8 2 1}$	$\mathbf{1 6 , 4 1 7}$
$\mathbf{8 1 , 0 6 5}$	$\mathbf{4 5 , 6 0 8}$	$\mathbf{7 , 5 1 2}$
$\mathbf{7 5 , 6 4 4}$	$\mathbf{4 5 , 0 3 5}$	$\mathbf{6 , 8 4 0}$
$\mathbf{7 2 , 8 3 3}$	$\mathbf{4 2 , 2 3 3}$	$\mathbf{6 , 6 2 6}$

$\mathbf{6 4 , 3 9 3}$	$\mathbf{3 9 , 0 1 9}$	$\mathbf{6 , 3 2 2}$
$\mathbf{5 8 , 2 4 0}$	$\mathbf{2 7 , 5 6 2}$	$\mathbf{5 , 5 7 9}$
$\mathbf{5 7 , 3 3 4}$	$\mathbf{2 3 , 5 7 1}$	$\mathbf{5 , 5 7 7}$
$\mathbf{5 6 , 6 4 0}$	$\mathbf{1 9 , 8 3 4}$	

Table 49

Continental Lithospheric Contribution

According to the article the rock formation is 72 million years old. ${ }^{69}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{69}$ through Isoplot we see that the dates vary from 5,000 to over 82,000 million years old [Table 50]. In Table 51 we can see the maximum ages for the Thorium/Lead dating method.

Dating Methods - Ages Summary

Dating	207Pb/206Pb	208Pb/232Th	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	4,920	6,126	4,539	-47
Maximum	4,949	10,084	7,723	0
Minimum	4,894	2,616	2,306	-75
Difference	55	7,467	5,417	75

$\xrightarrow{\text { Thorium/Lead - Maximum Ages }}$

Age
$\mathbf{1 0 , 0 8 4}$
$\mathbf{9 , 3 2 0}$
$\mathbf{8 , 1 0 1}$
$\mathbf{7 , 5 0 2}$
$\mathbf{7 , 0 8 0}$
$\mathbf{6 , 8 9 1}$
$\mathbf{6 , 6 5 5}$
$\mathbf{6 , 3 1 3}$
$\mathbf{5 , 8 3 0}$
$\mathbf{5 , 7 5 5}$
$\mathbf{5 , 0 2 9}$

Table 51

Cenozoic Volcanic Rocks of Eastern China

According to the article the rock formation is Quaternary in age. ${ }^{70}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{71}$ through Isoplot we see that the dates vary from 4,000 to over 17,000 million years old [Table 52]. In Table 53 we can see the maximum ages for the Thorium/Lead dating method.

Dating Methods - Ages Summary

Table	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$
Summaries	Age	Age	Age	Age
Average	$\mathbf{5 , 0 5 7}$	$\mathbf{5 , 2 9 6}$	$\mathbf{1 0 , 5 8 9}$	$\mathbf{- 1 , 5 0 2}$
Maximum	$\mathbf{5 , 1 2 0}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{0}$

Minimum	$\mathbf{5 , 0 0 2}$	$\mathbf{1 , 1 3 6}$	$\mathbf{4 , 0 4 2}$	$\mathbf{- 3 , 5 9 3}$
Difference	118	7,448	13,129	$\mathbf{3 , 5 9 3}$

Table 52

Thorium/Lead - Maximum Ages

Age	Age	Age	Age
$\mathbf{1 7 , 1 7 1}$	$\mathbf{1 3 , 3 2 2}$	$\mathbf{9 , 7 3 7}$	$\mathbf{7 , 9 6 8}$
$\mathbf{1 5 , 3 4 3}$	$\mathbf{1 3 , 2 0 2}$	$\mathbf{9 , 7 0 7}$	$\mathbf{7 , 8 3 0}$
$\mathbf{1 5 , 2 9 9}$	$\mathbf{1 3 , 0 0 1}$	$\mathbf{9 , 0 4 9}$	$\mathbf{7 , 2 5 0}$
$\mathbf{1 5 , 1 3 6}$	$\mathbf{1 1 , 1 1 9}$	$\mathbf{8 , 4 2 0}$	$\mathbf{6 , 9 7 2}$
$\mathbf{1 5 , 0 5 4}$	$\mathbf{1 0 , 8 7 3}$	$\mathbf{8 , 4 1 9}$	$\mathbf{6 , 6 2 8}$
$\mathbf{1 3 , 4 7 6}$	$\mathbf{1 0 , 7 5 8}$	$\mathbf{8 , 3 6 8}$	$\mathbf{6 , 5 7 7}$

Table 53

Sr, Nd, and Pb isotopes

According to the article the rock formation is 2,900 million years. ${ }^{72}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{73}$ through Isoplot we see that the dates vary from 79 to over 94,000 million years old [Table 54]. In Table 55 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary			
Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	14,198	7,366	5,014
Maximum	94,396	22,201	5,077
Minimum	79	1,117	4,945
Difference	94,317	21,083	131
Table 54			

Table 54

Thorium/Lead - Maximum Ages

Age	Age	Age	Age
$\mathbf{9 4 , 3 9 6}$	$\mathbf{3 9 , 2 6 7}$	$\mathbf{1 0 , 5 9 5}$	$\mathbf{8 , 1 7 1}$
$\mathbf{9 0 , 6 8 3}$	$\mathbf{2 6 , 2 6 6}$	$\mathbf{1 0 , 2 8 4}$	$\mathbf{7 , 7 8 9}$
$\mathbf{7 4 , 6 3 9}$	$\mathbf{1 8 , 3 3 4}$	$\mathbf{9 , 3 2 8}$	$\mathbf{7 , 6 3 8}$
$\mathbf{5 8 , 1 5 3}$	$\mathbf{1 6 , 3 5 7}$	$\mathbf{8 , 8 2 1}$	$\mathbf{7 , 3 7 5}$
$\mathbf{5 5 , 3 2 4}$	$\mathbf{1 4 , 2 5 0}$	$\mathbf{8 , 7 7 1}$	$\mathbf{7 , 3 1 7}$
$\mathbf{4 5 , 2 4 2}$	$\mathbf{1 1 , 2 1 5}$	$\mathbf{8 , 4 0 3}$	$\mathbf{5 , 7 5 9}$

Table 55

An Extremely low U/Pb Source

According to the article: "The Rb-Sr data yield an internal isochron age of $3,840 \pm 32$ Ma." ${ }^{74}$ If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{75}$ through Isoplot we see that the dates vary from 5,000 to over 13,000 million years old [Table 56]. In Table 57 we can see the maximum ages for the Thorium/Lead dating method.

Uranium/Thorium/Lead - Ages Summary

Table	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	208Pb/232Th	$207 \mathrm{~Pb} / 235 \mathrm{U}$	87Rb/86Sr
Summaries	Age	Age	Age	Age	Age

Average	$\mathbf{4 , 6 7 3}$	$\mathbf{8 , 0 3 5}$	$\mathbf{1 0 , 1 4 8}$	$\mathbf{4 , 5 4 6}$	$\mathbf{3 , 6 1 9}$
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 6 , 9 2 3}$	$\mathbf{6 5 , 2 8 6}$	$\mathbf{8 , 1 2 8}$	$\mathbf{5 , 3 8 5}$
Minimum	$\mathbf{3 , 9 6 1}$	$\mathbf{1 , 4 7 7}$	$\mathbf{2 , 5 4 2}$	$\mathbf{2 , 7 8 4}$	$\mathbf{7 2 1}$
Difference	$\mathbf{1 , 0 5 7}$	$\mathbf{5 5 , 4 4 5}$	$\mathbf{6 2 , 7 4 4}$	$\mathbf{5 , 3 4 4}$	$\mathbf{4 , 6 6 4}$

Table 56
Thorium/Lead - Maximum Ages

Age	Age	Age	Age
$\mathbf{6 5 , 2 8 6}$	$\mathbf{1 4 , 4 3 0}$	$\mathbf{9 , 0 9 4}$	$\mathbf{5 , 4 0 1}$
$\mathbf{3 3 , 8 9 8}$	$\mathbf{1 4 , 4 1 0}$	$\mathbf{6 , 5 2 0}$	$\mathbf{5 , 3 9 6}$
$\mathbf{2 5 , 0 1 3}$	$\mathbf{1 3 , 1 0 7}$	$\mathbf{6 , 1 6 6}$	$\mathbf{5 , 3 6 5}$
22,178	$\mathbf{1 2 , 7 3 8}$	$\mathbf{6 , 1 2 1}$	$\mathbf{5 , 0 9 8}$
21,204	$\mathbf{1 1 , 6 4 1}$	$\mathbf{5 , 6 7 1}$	$\mathbf{5 , 0 3 5}$
$\mathbf{1 7 , 6 1 1}$	$\mathbf{1 1 , 1 7 4}$	$\mathbf{5 , 4 0 8}$	$\mathbf{4 , 6 7 8}$

Table 57

Petrogenesis and Origins of Mid-Cretaceous

According to the article: "The basal lava flow displays a sharp contact with the underlying terrestrial sediments, which in turn rest on shallow marine sediments of Ngaterian age (100.2-95.2Ma)." ${ }^{76}$ If we run the $\mathrm{Rb} / \mathrm{Sr}$ ratios ${ }^{77}$ through Microsoft Excel we see that the dates vary from 15 to 85 million years old [Table 58]. If we run the $\mathrm{Pb} / \mathrm{Th}$ ratios ${ }^{78}$ through Isoplot we see that the dates vary from 4,000 to over 10,000 million years old [Table 58]. In Table 59 we can see the maximum ages for the Thorium/Lead dating method.

Dating Methods - Ages Summary

Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U
Summaries	Age	Age	Age	Age	Age
Average	$\mathbf{4 , 8 7 6}$	$\mathbf{4 , 4 1 6}$	$\mathbf{5 9}$	$\mathbf{6 , 3 3 3}$	$\mathbf{3 , 5 1 5}$
Maximum	$\mathbf{4 , 9 4 5}$	$\mathbf{5 , 1 5 9}$	$\mathbf{8 5}$	$\mathbf{1 0 , 7 1 6}$	$\mathbf{5 , 7 1 7}$
Minimum	$\mathbf{4 , 8 3 6}$	$\mathbf{4 , 0 8 8}$	$\mathbf{1 5}$	$\mathbf{4 , 7 8 5}$	$\mathbf{2 , 7 1 2}$
Difference	109	$\mathbf{1 , 0 7 1}$	$\mathbf{7 0}$	5,931	$\mathbf{3 , 0 0 5}$

Table 58

Thorium/Lead - Maximum Ages

Age	Age	Age
10,716	6,355	$\mathbf{5 , 6 5 5}$
7,520	6,354	5,598
7,259	6,138	5,519
7,145	$\mathbf{6 , 0 3 2}$	5,515
6,559	5,972	5,505
$\mathbf{6 , 5 1 1}$	5,972	5,210
Table 59		

Conclusion

If we use the standard formula ${ }^{79}$ for calculating $\mathrm{Rb} / \mathrm{Sr}$ ages we find on many occasions that the Uranium/Thorium/Lead dates are all wrong! Evolutionist Brent Dalrymple states:
"Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{80}$
Looking at some of the dating it is obvious that precision is much lacking. He then goes on:
"Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{81}$

I his book he gives a table ${ }^{82}$ with radiometric dates of twenty meteorites. If you run the figures through Microsoft Excel, you will find that they are 98.7% in agreement. There is only a seven percent difference between the ratio of the smallest and oldest dates. As we have seen in this essay, such a perfect fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best.

Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

Mathematical Calculations and hyperlinks to the Adobe Acrobat files of each of the Geology Magazine
articles cited are on the following Microsoft Excel Spreadsheets:

Geo_Dating\Rubidium\Rubidium_Strontium.xlsm
Geo_Dating\Lead_206_207\Master_Index.xlsm

Install Isoplot Version 4 to make the formulas work http://www.bgc.org/isoplot_etc/isoplot.html

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
The age of 10 to 15 billion years for the age of the Universe.
http://en.wikipedia.org/wiki/Age of the_universe
$3 \quad$ http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
4
http://en.wikipedia.org/wiki/Age_of the_Earth
$5 \quad$ http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
6 The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
7 http://www.bgc.org/isoplot_etc/isoplot.html
8 Tracing the Indian Ocean Mantle, Journal Of Petrology, 1998, Volume 39, Number 7, Pages 1288
$9 \quad$ Reference 8, Page 1292-1294
10 Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711

Reference 10, Page 729-730
Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 556
Reference 12, Table 1, Page 558
Reference 12, Page 566
Reference 12, Page 575-576
Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 667

Reference 16, Table 5, Page 676, 677
Reference 16, Table 9, Page 684
Evidence for a Widespread Tethyan Upper Mantle, Journal Of Petrology, 2005, Volume 46, Number 4, Pages 830

Reference 19, Charts, Pages 843, 844, 845, 849
Reference 19, Pages 832-834

Reference 19, Pages 835-837
Post-Collisional Potassic and Ultrapotassic Magmatism, Journal Of Petrology, 1999, Volume 40,
Number 9, Pages 1399
Reference 23, Page 1403
Reference 23, Page 1414
Reference 23, Page 1415
Continental Lithospheric Contribution to Alkaline, Journal Of Petrology, 1997, Volume 38, Number 1, Pages 115

Reference 27, Pages 124, 125

Pin Pricking The Elephant, Geological Society Of London, Special Publications, 2004, Volume 229, Pages 139, 140, 144

Reference 29, Pages 138, 143
Reference 29, Pages 143
Chronology And Geochemistry Of Lavas, Journal Of Petrology, April 11, 2012, Pages 1-32
Pages 1
Reference 32, Pages 5, 6, 7, 14
Reference 32, Pages 12
Ion microprobe U-Th-Pb dating, Meteoritics \& Planetary Science, 2004, Volume 39, Number 12, Pages 2033

Reference 35, Pages 2036

U-Th-Pb Dating Of Secondary Minerals, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 2078

Reference 37, Pages 2072, 2073
Reference 37, Pages 2074
Reference 37, Pages 2080, 2081
The Influence of High U-Th, Geochimica et Cosmochimica Acta, 1998, Volume 62, Numbers 21/22, Pages 3527

Reference 41, Pages 3529
Reference 41, Pages 3531
U, Th And Pb Isotope Compositions, Geochimica et Cosmochimica Acta, 2009, Volume 73, Pages 469

Reference 44, Pages 471
Earth Planetary Science Letters, 1987, Volume 82, Pages 121-135.
Chemical Geology, 2003, Volume 200, Pages 71-87.
Journal Petrology, 1993, Volume 34, Pages 125-172.
Geochimica et Cosmochimica Acta, 2007, Volume 71, Pages 1290-1311
Reference 44, Pages 475, 476
U-Th-Pb Isotope Data, Earth and Planetary Science Letters, 2012, Volume 319-320, Pages 200

Reference 51, Pages 199
Evolution Of Reunion Hotspot Mantle, Earth and Planetary Science Letters, 1995, Volume 134, Pages 169

Reference 53, Page 174
Continental Growth 3.2 Gyr Ago, Nature, 2012, Volume 485, Pages 627-630, http://www.nature.com/nature/journal/v485/n7400/extref/nature11140-s3.xls

Uranium-Lead Zircon Ages, http://pubs.usgs.gov/of/2008/1142/tables/table04.xls
Pilbara Craton in Western Australia, http://www.geo.uu.nl/~kikeb/thesis/thesis/thesis frame.html
http://www.geo.uu.nl/~kikeb/thesis/database/upb/KB746.xls
www.geo.uu.nl/~kikeb/thesis/database/upb/KB770.xls
Timing of sedimentation, metamorphism, and plutonism, http://geosphere.gsapubs.org/content/3/6/683.abstract
http://geosphere.gsapubs.org/content/suppl/2009/02/18/3.6.683.DC1/00138_App3.xls

62

U-Th and U-Pb Systematics in Zircons, Journal Petrology, January 1, 2005, volume 46, Number 1, Pages 27
http://petrology.oxfordjournals.org/content/suppl/2004/09/24/egh060.DC1/Table_3.xls
Hydrothermal Zebra Dolomite, Geosphere, October 2010, Volume 6, Number 5, Pages 663-690, http://geosphere.gsapubs.org/content/suppl/2010/09/29/6.5.663.DC1/530_supp1.xls

Origin of Indian Ocean Seamount Province, Nature Geoscience, 2011, Volume 4, Pages 883-887
www.nature.com/ngeo/journal/v4/n12/extref/ngeo1331-s2.xls
Geochemistry Geophysics Geosystems, 2003, Volume 4, Page 1089, http://earthref.org/ERDA/download:147/

Continental Lithospheric Contribution, Journal Of Petrology, 1997, Volume 38, Number 1, Pages 124

Cenozoic Volcanic Rocks of Eastern China, Earth and Planetary Science Letters, Volume 105 (1991), Pages 154

Reference 70, Pages 156, 157
Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113 (1992), Pages 107
Reference 72, Page 110
An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687

Reference 74, Pages 4690, 4691
Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51, Number 10, Pages 2005

Reference 76, Page 2024
Reference 76, Page 2025
Isotopes in the Earth Sciences, Edited By Robert Brown, 1988, Elsevier, 1994, Chapman and Hall Publishers, Page 167 http://books.google.de/books?id=k90iAnFereYC\&pg=PA162\#v=onepage \&q\&f=false

The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

Reference 81, Page 23
Reference 81, Page 287

The Uranium 235 Dating Method
 By Paul Nethercott
 August 2013

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ${ }^{7}$ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically with the Rubidium/Strontium ages. The $\mathrm{U} / \mathrm{Th} / \mathrm{Pb}$ ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang?

If we use isotopic formulas ${ }^{8-11}$ given in standard geology text we can arrive at ages from the $\mathrm{Rb} / \mathrm{Sr}$ and $\mathrm{Nd} / \mathrm{Sm}$ ratios. The formula for $\mathrm{Rb} / \mathrm{Sr}$ age is given as:
$t=\frac{2.303}{\lambda} \log \left(\frac{(87 S r / 86 S r)-(87 S r / 86 S r)_{0}}{(87 R b / 86 S r)}+1\right)$

Where t equals the age in years. λ equals the decay constant. ($87 \mathrm{Sr} / 86 \mathrm{Sr}$) $=$ the current isotopic ratio. $(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=$ the initial isotopic ratio. $(87 \mathrm{Rb} / 86 \mathrm{Sr})=$ the current isotopic ratio. The same is true for the formula below.
$t=\frac{2.303}{\lambda} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(147 S m / 144 N d)}+1\right)$
Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Petrogenesis of the Flood Basalts

According to the article ${ }^{12}$ this basalt form the Northern Kerguelen Archipelago was dated in 1998 by scientists from the Massachusetts Institute Of Technology, University of Brussels, Belgium and the San Diego State University. According to the essay: "The dominance of this isotopic signature in archipelago lavas for 30 my and its presence in $\sim 40 \mathrm{Ma}$ gabbros is consistent with the previous interpretation that these are isotopic characteristics of the Kerguelen Plume." ${ }^{12}$ Various tables ${ }^{13}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over a 44 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Mount Bureau	Age	Age	Age	Age
Summary	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	$\mathbf{2 0 8 P b} / 232 \mathbf{T h}$
Average	$\mathbf{5 , 0 0 6}$	$\mathbf{5 , 9 2 4}$	$\mathbf{5 , 1 6 1}$	$\mathbf{8 , 4 1 0}$
Maximum	$\mathbf{5 , 0 2 0}$	$\mathbf{2 3 , 3 6 6}$	$\mathbf{8 , 4 9 6}$	$\mathbf{4 4 , 3 7 8}$
Minimum	$\mathbf{4 , 9 9 4}$	$\mathbf{3 , 3 3 5}$	$\mathbf{4 , 4 5 4}$	$\mathbf{2 , 6 5 0}$
Difference	$\mathbf{2 6}$	$\mathbf{2 0 , 0 3 1}$	$\mathbf{4 , 0 4 2}$	$\mathbf{4 1 , 7 2 8}$

Mt. Rabouillere	Age	Age	Age	Age
Summary	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$	$\mathbf{2 0 7 P b} / \mathbf{2 3 5 U}$	$\mathbf{2 0 8 P b} / \mathbf{2 3 2 T h}$
Average	$\mathbf{5 , 0 0 8}$	$\mathbf{4 , 9 0 3}$	$\mathbf{4 , 9 7 5}$	$\mathbf{6 , 1 4 2}$
Maximum	$\mathbf{5 , 0 1 9}$	$\mathbf{5 , 3 5 5}$	$\mathbf{5 , 1 0 0}$	$\mathbf{7 , 7 8 8}$
Minimum	$\mathbf{5 , 0 0 0}$	$\mathbf{4 , 3 0 5}$	$\mathbf{4 , 7 9 3}$	$\mathbf{2 , 7 9 9}$
Difference	$\mathbf{2 0}$	$\mathbf{1 , 0 5 0}$	$\mathbf{3 0 7}$	$\mathbf{4 , 9 8 9}$

Nature of the Source Regions

According to the article ${ }^{14}$ this lava from southern Tibet was dated in 2004 by scientists from the Open University in Milton Keynes, the University of Bristol and Cardiff University. According to the essay: "Most samples are Miocene in age, ranging from 10 to 25 Ma in the south and 19 Ma to the present day in northern Tibet." ${ }^{15}$ Various tables ${ }^{16}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over an 88 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

207Pb/235U Age	Model Age	Ratio	Percentage
5,136	0.5	10,273	$10,272,962$
5,138	0.5	10,275	$10,275,154$
5,135	13	395	395,000
5,140	18.5	278	277,839
7,470	13	575	574,597
7,471	12.5	598	597,649

207Pb/235U Age	Model Age	Ratio	Percentage
313	24.0	13	13,026
946	13.8	69	68,534
266	13.8	19	19,267
238	13.8	17	17,265
294	13.3	22	22,095
447	18.8	24	23,757
482	17.3	28	27,878

Generation of Palaeocene Adakitic Andesites

According to the article ${ }^{17}$ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Palaeocene (c. $55-58 \mathrm{Ma}$) adakitic andesites from the Yanji area." ${ }^{17}$ Numerous table and charts affirm this as the true age. ${ }^{18} \mathrm{~A}$ table ${ }^{19}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 10 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

207Pb/206Pb	208Pb/232Th	206Pb/238U	207Pb/235U
Age	Age	Age	Age
$\mathbf{5 , 0 2 4}$	$\mathbf{1 0 , 5 1 8}$	$\mathbf{9 , 6 6 9}$	$\mathbf{6 , 0 5 2}$
$\mathbf{5 , 0 2 3}$	$\mathbf{1 0 , 2 7 7}$	$\mathbf{9 , 5 5 2}$	$\mathbf{6 , 0 5 1}$
$\mathbf{5 , 0 2 3}$	$\mathbf{8 , 5 2 9}$	$\mathbf{9 , 5 2 6}$	$\mathbf{6 , 0 5 1}$
5,023	$\mathbf{8 , 3 6 0}$	$\mathbf{8 , 4 4 3}$	$\mathbf{5 , 8 2 8}$
5,021	$\mathbf{8 , 1 6 5}$	$\mathbf{7 , 9 2 9}$	$\mathbf{5 , 8 2 6}$
$\mathbf{5 , 0 2 0}$	$\mathbf{7 , 8 0 0}$	$\mathbf{7 , 4 0 3}$	$\mathbf{5 , 6 4 1}$

Ivisaartoq Greenstone Belt

According to the article ${ }^{20}$ this rock formation from southern West Greenland was dated in 2007 by scientists from Canada, Denmark, USA and Austria. According to the essay the true age is: "The Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt in southern West Greenland." ${ }^{20} \mathrm{~A}$ table ${ }^{21}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 3 billion years!

207Pb/235U	208Pb/232Th	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$
Age	Age	Age	Age
$\mathbf{5 , 2 8 8}$	$\mathbf{2 , 6 7 1}$	$\mathbf{2 8 7 6}$	$\mathbf{3 0 8 2}$
$\mathbf{5 , 1 6 2}$	$\mathbf{2 , 8 6 0}$	$\mathbf{2 7 1 2}$	$\mathbf{2 9 9 8}$
$\mathbf{5 , 2 9 9}$	$\mathbf{2 , 5 8 6}$	$\mathbf{2 9 5 5}$	$\mathbf{3 0 4 6}$
$\mathbf{5 , 4 0 7}$	$\mathbf{2 , 3 0 5}$	$\mathbf{3 1 9 5}$	$\mathbf{3 0 5 9}$
$\mathbf{5 , 3 0 2}$	$\mathbf{2 , 7 2 6}$	$\mathbf{2 9 3 0}$	$\mathbf{3 0 6 7}$

Geophysical Systems

According to the article ${ }^{22}$ this rock formation was dated in 2003. A table ${ }^{23}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 82 billion years!

Dating	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th	87Rb/86Sr	147Sm/144Nd
Summary	Age	Age	Age	Age	Age	Age
Average	$\mathbf{1 5 , 3 4 5}$	$\mathbf{7 , 0 1 9}$	$\mathbf{4 , 9 3 6}$	$\mathbf{3 9 , 0 6 8}$	$\mathbf{1 0 2}$	$\mathbf{1 0 2}$
Maximum	$\mathbf{3 8 , 3 4 0}$	$\mathbf{1 0 , 8 7 2}$	$\mathbf{5 , 0 4 3}$	$\mathbf{8 2 , 8 6 5}$	$\mathbf{1 4 0}$	$\mathbf{1 4 0}$
Minimum	$\mathbf{3 , 1 2 5}$	$\mathbf{4 , 3 8 5}$	$\mathbf{4 , 7 6 0}$	5,577	$\mathbf{7 0}$	$\mathbf{6 8}$
Std Deviation	$\mathbf{9 , 6 5 7}$	$\mathbf{1 , 7 5 0}$	$\mathbf{6 3}$	$\mathbf{2 7 , 3 9 0}$	$\mathbf{1 6}$	$\mathbf{1 7}$

History Of The Pasamonte Achondrite

According to the article this meteorite specimen was dated in 1977 by scientists from the United States Geological Survey, Colorado and the Department of Chemistry and Geochemistry, Colorado School of Mines. ${ }^{24}$ The article states that Rubidium/Strontium dating affirms that this material is 4.5 billion years old. ${ }^{25}$ If we run the various isotope ratios ${ }^{25}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

Summary	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$
Average	$\mathbf{3 , 0 8 8}$	$\mathbf{3 , 6 6 6}$	$\mathbf{4 , 5 6 6}$	$\mathbf{2 , 2 6 3}$
Maximum	$\mathbf{5 , 6 9 4}$	$\mathbf{5 , 0 3 2}$	$\mathbf{4 , 9 6 3}$	$\mathbf{1 4 , 8 0 0}$
Minimum	$\mathbf{1 0 3}$	$\mathbf{8 6 5}$	$\mathbf{4 , 4 4 0}$	$\mathbf{- 1 0 , 7 0 0}$
Difference	$\mathbf{5 , 5 9 1}$	$\mathbf{4 , 1 6 7}$	$\mathbf{5 2 3}$	$\mathbf{2 5 , 5 0 0}$

If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{25}$ from the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary	
Average	$\mathbf{4 , 4 0 3}$
Maximum	$\mathbf{6 , 6 7 4}$
Minimum	$\mathbf{2 , 4 1 2}$
Difference	$\mathbf{4 , 2 6 2}$

Table 18
The Thorium/Lead dates are up to twelve billion years older. The so called true age is just a guess.

An Extremely Low U/Pb Source

According to the article ${ }^{26}$ this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The $\mathrm{Pb}-\mathrm{Pb}$ internal isochron obtained for acid leached residues of separated mineral fractions yields an age of $3940 \pm 28 \mathrm{Ma}$, which is similar to the $\mathrm{U}-\mathrm{Pb}(3850 \pm 150$ $\mathrm{Ma})$ and $\mathrm{Th}-\mathrm{Pb}(3820 \pm 290 \mathrm{Ma})$ internal isochron ages. The $\mathrm{Sm}-\mathrm{Nd}$ data for the mineral separates yield an internal isochron age of $3871 \pm 57 \mathrm{Ma}$ and an initial $143 \mathrm{Nd} / \mathrm{I} 44 \mathrm{Nd}$ value of 0.50797 ± 10. The $\mathrm{Rb}-\mathrm{Sr}$ data yield an internal isochron age of $3840 \pm 32 \mathrm{Ma} .{ }^{26}$

Rb/Sr Age Dating Summary	
Average	$\mathbf{3 , 6 1 9}$
Maximum	$\mathbf{5 , 3 8 5}$
Minimum	$\mathbf{7 2 1}$
Difference	$\mathbf{4 , 6 6 4}$

Table 47
Uranium Age Dating Summary

Table	207Pb/206Pb	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{2 0 7 P b} / \mathbf{2 3 5 U}$
Summaries	Age	Age	Age	Age
Average	$\mathbf{4 , 6 7 3}$	$\mathbf{8 , 0 3 5}$	$\mathbf{1 0 , 1 4 8}$	$\mathbf{4 , 5 4 6}$
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 6 , 9 2 3}$	$\mathbf{6 5 , 2 8 6}$	$\mathbf{8 , 1 2 8}$
Minimum	$\mathbf{3 , 9 6 1}$	$\mathbf{1 , 4 7 7}$	$\mathbf{2 , 5 4 2}$	$\mathbf{2 , 7 8 4}$
Difference	$\mathbf{1 , 0 5 7}$	$\mathbf{5 5 , 4 4 5}$	$\mathbf{6 2 , 7 4 4}$	$\mathbf{5 , 3 4 4}$

Table 48

The article claims that the $\mathrm{Rb} / \mathrm{Sr}$ age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ${ }^{27}$ so stupid? Or are they right and the $\mathrm{Rb} / \mathrm{Sr}^{28}$ is wrong?
208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{6 5 , 2 8 6}$	$\mathbf{1 4 , 4 3 0}$	$\mathbf{9 , 0 9 4}$	$\mathbf{5 , 4 0 1}$
$\mathbf{3 3 , 8 9 8}$	$\mathbf{1 4 , 4 1 0}$	$\mathbf{6 , 5 2 0}$	$\mathbf{5 , 3 9 6}$
$\mathbf{2 5 , 0 1 3}$	$\mathbf{1 3 , 1 0 7}$	$\mathbf{6 , 1 6 6}$	$\mathbf{5 , 3 6 5}$
$\mathbf{2 2 , 1 7 8}$	$\mathbf{1 2 , 7 3 8}$	$\mathbf{6 , 1 2 1}$	$\mathbf{5 , 0 9 8}$
$\mathbf{2 1 , 2 0 4}$	$\mathbf{1 1 , 6 4 1}$	$\mathbf{5 , 6 7 1}$	$\mathbf{5 , 0 3 5}$
$\mathbf{1 7 , 6 1 1}$	$\mathbf{1 1 , 1 7 4}$	$\mathbf{5 , 4 0 8}$	$\mathbf{4 , 6 7 8}$
Table 49			

206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{5 6 , 9 2 3}$	$\mathbf{1 0 , 8 9 5}$	$\mathbf{6 , 7 6 4}$	$\mathbf{5 , 7 7 7}$
27,313	$\mathbf{1 0 , 2 7 8}$	$\mathbf{6 , 6 7 0}$	$\mathbf{5 , 6 2 5}$
17,873	$\mathbf{9 , 6 5 3}$	$\mathbf{6 , 4 4 9}$	$\mathbf{5 , 6 0 2}$
13,680	$\mathbf{8 , 0 0 9}$	$\mathbf{6 , 4 3 6}$	$\mathbf{5 , 2 7 8}$
13,623	$\mathbf{7 , 3 9 5}$	$\mathbf{6 , 0 7 0}$	$\mathbf{5 , 1 4 7}$

Table 50

Petrogenesis and Origins of Mid-Cretaceous

According to the article ${ }^{-29}$ this specimen from the Intraplate Volcanism in Marlborough, New Zealand was dated in 2010 by scientists from New Zealand. According to the essay: "the intraplate basalts in New Zealand that have been erupted intermittently over the last c. 100 Myr." ${ }^{30}$ Various tables ${ }^{31}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 10 billion year range. None of the Lead based dating methods even come vaguely close to a Cretaceous age.

Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U
Summaries	Age	Age	Age	Age	Age
Average	$\mathbf{4 , 8 7 6}$	$\mathbf{4 , 4 1 6}$	59	$\mathbf{6 , 3 3 3}$	$\mathbf{3 , 5 1 5}$
Maximum	$\mathbf{4 , 9 4 5}$	$\mathbf{5 , 1 5 9}$	$\mathbf{8 5}$	$\mathbf{1 0 , 7 1 6}$	$\mathbf{5 , 7 1 7}$
Minimum	$\mathbf{4 , 8 3 6}$	$\mathbf{4 , 0 8 8}$	$\mathbf{1 5}$	$\mathbf{4 , 7 8 5}$	$\mathbf{2 , 7 1 2}$
Difference	$\mathbf{1 0 9}$	$\mathbf{1 , 0 7 1}$	$\mathbf{7 0}$	$\mathbf{5 , 9 3 1}$	$\mathbf{3 , 0 0 5}$

U-Th-Pb Dating Of Secondary Minerals

According to the article ${ }^{32}$ this rock formation Yucca Mountain, Nevada was dated in 2008 by scientists from United States Geological Survey, Geological Survey of Canada, and the Australian National University. According to the essay the true age is unknown: "The $\mathrm{U}-\mathrm{Pb}$ system in opal and chalcedony allows dating in the age range from 50 ka to millions of years and older (Ludwig et al., 1980; Neymark et al., 2000, 2002). Recently, the reliability of $\mathrm{U}-\mathrm{Pb}$ dating of opal was questioned." ${ }^{33}$ Other authors have affirmed the same problem. ${ }^{33}$ Two tables ${ }^{34}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 353 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 350,000 times older than the youngest date.

Age Dating Summary					
Dating	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age	
Average	$\mathbf{3 , 4 5 9}$	$\mathbf{4 , 8 9 1}$	$\mathbf{9 , 9 8 4}$	$\mathbf{1 2}$	
Maximum	$\mathbf{8 , 1 2 6}$	31,193	$\mathbf{3 5 2 , 9 6 2}$	$\mathbf{1 3}$	
Minimum	-445	1	2	11	
Difference	$\mathbf{8 , 5 7 1}$	$\mathbf{3 1 , 1 9 2}$	$\mathbf{3 5 2 , 9 6 0}$	2	
Table 78					

Another table ${ }^{35}$ in the essay has a list of calculated dates As we can see below they are all at radical disagreement with each other. There is a spread of dates of 82 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 82,000 times older than the youngest date.

Age Dating Summary					
Dating	206Pb/238U	207Pb/235U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age	
Average	$\mathbf{1 , 5 4 0}$	46	7,687	$\mathbf{1 2}$	
Maximum	20,209	486	82,030	13	
Minimum	1	0	3	11	
Difference	$\mathbf{2 0 , 2 0 8}$	486	82,027	2	
Table 79					

References

2 http://en.wikipedia.org/wiki/Age_of_the_universe
3 http://arxiv.org/pdf/1001.4744v1.pdf Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik

4 http://en.wikipedia.org/wiki/Age_of_the_Earth
5 http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple, Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221

6 The age of the earth, Gérard Manhes, Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382

7 http://www.bgc.org/isoplot_etc/isoplot.html
8 Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73 [Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].

9 Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

10
Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990.

Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].

Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].

Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711-748

Reference 119, Pages 729, 730
Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 555
Reference 121, Pages 556
Reference 121, Pages 566, 575, 576
Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 661

Reference 124, Pages 676-678
Reference 124, Pages 684
Ivisaartoq Greenstone Belt, Gondwana Research, Volume 11 (2007) Page 69
Reference 20, Pages 86
Geochemistry Geophysics Geosystems, 2003, Volume 4, Page 1089,
http://earthref.org/ERDA/download:147/
History Of The Pasamonte Achondrite, Earth and Planetary Science Letters, Volume 37, 1977, Pages 1

Reference 33, Pages 3, 9
An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702

Reference 75, Pages 4690, 4691
Reference 75, Pages 4696
Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51, Number 10, Pages 2003-2045

Reference 110, Pages 2038
Reference 110, Pages 2024-2026
U-Th-Pb Dating Of Secondary Minerals, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 2067

Reference 32, Pages 2068
Reference 32, Pages 2072-2074, 2080-2081

www.creation.com

The Uranium 238 Dating Method
 By Paul Nethercott
 July 2013

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ${ }^{7}$ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically other dating methods. The $\mathrm{U} / \mathrm{Th} / \mathrm{Pb}$ ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang? Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Rocks Of The Central Wyoming Province

These rock samples were dated in 2005 by scientists from the University of Wyoming. ${ }^{8}$ If we run the Rubidium/Strontium and Neodymium/Samarium isotope ratios ${ }^{9}$ from the article through Microsoft Excel and use the formulas listed in Gunter Faure's book ${ }^{10}$ we get the following values:
$t=\frac{2.303}{(0.693 \div h)} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(144 S m / 147 N d)}+1\right)$
$\mathrm{h}=$ half life, 106 billion years
$t=\frac{2.303}{(0.693 \div h)} \log \left(\frac{(87 S r / 86 S r)-(87 S r / 86 S r)_{0}}{(87 R b / 86 S r)}+1\right)$
$\mathrm{h}=$ half life, 48.8 billion years
Where t equals the age in years. $(87 \mathrm{Sr} / 86 \mathrm{Sr})=$ the current isotopic ratio. $(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=$ the initial isotopic ratio. $(87 \mathrm{Rb} / 86 \mathrm{Sr})=$ the current isotopic ratio. The same is true for the formula below

Ages Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	208Pb/232Th	206Pb/238U
Average	2,863	2,869	5,123	$\mathbf{1 7 , 8 9 9}$	$\mathbf{1 1 , 9 0 6}$
Maximum	2,952	2,954	5,294	$\mathbf{3 8 , 7 4 6}$	$\mathbf{1 8 , 9 8 5}$
Minimum	2,630	2,631	4,662	$\mathbf{6 , 6 5 0}$	$\mathbf{7 , 2 9 4}$
Std Deviation	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{1 5 2}$	$\mathbf{9 , 7 5 4}$	$\mathbf{3 , 2 9 8}$

Table 1

The Uranium/Lead dates ${ }^{11}$ are up to sixteen billion years older than the Rubidium/Strontium and Neodymium/Samarium dates. The Thorium/Lead dates are up to thirty six billion years older. The so called true age is just a guess.

History Of The Pasamonte Achondrite

According to the article this meteorite specimen was dated in 1977 by scientists from the United States Geological Survey, Colorado and the Department of Chemistry and Geochemistry, Colorado School of Mines. ${ }^{12}$ The article states that Rubidium/Strontium dating affirms that this material is 4.5 billion years old. ${ }^{34}$ If we run the various isotope ratios ${ }^{13}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

U/Th/Pb Age Dating Summary

Summary	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$207 \mathrm{~Pb} / 235 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$208 \mathrm{~Pb} / 232 \mathrm{Th}$
Average	$\mathbf{3 , 0 8 8}$	$\mathbf{3 , 6 6 6}$	$\mathbf{4 , 5 6 6}$	$\mathbf{2 , 2 6 3}$
Maximum	5,694	5,032	4,963	$\mathbf{1 4 , 8 0 0}$
Minimum	$\mathbf{1 0 3}$	$\mathbf{8 6 5}$	$\mathbf{4 , 4 4 0}$	$\mathbf{- 1 0 , 7 0 0}$
Difference	$\mathbf{5 , 5 9 1}$	$\mathbf{4 , 1 6 7}$	$\mathbf{5 2 3}$	$\mathbf{2 5 , 5 0 0}$

Table 2
If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{13}$ from the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary	
Average	$\mathbf{4 , 4 0 3}$
Maximum	$\mathbf{6 , 6 7 4}$
Minimum	$\mathbf{2 , 4 1 2}$
Difference	$\mathbf{4 , 2 6 2}$

Table 3
The Thorium/Lead dates are up to twelve billion years older. The so called true age is just a guess.

A Depleted Mantle Source For Kimberlites

According to the article ${ }^{14}$ this specimen [kimberlites from Zaire] was dated in 1984 by scientists from Belgium. According to the article ${ }^{15}$ the age of the samples is 70 million years. If we run the various isotope ratios ${ }^{18}$ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary

Age Dating Summary					
Summary	207Pb/206Pb	206Pb/238U	87Rb/86Sr	147Sm/144Nd	
Average	4,977	4,810	86	72	
Maximum	5,017	10,870	146	80	
Minimum	4,909	1,391	50	63	
Difference	108	9,478	196	17	

Table 4

The $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ maximum age is 34 times older than the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ maximum age. The $206 \mathrm{~Pb} / 238 \mathrm{U}$ maximum age is 74 times older than the $147 \mathrm{Sm} / 144 \mathrm{Nd}$ maximum age. There is a 10.8 billion year difference between the oldest and youngest age attained.

Pb, Nd And Sr Isotopic Geochemistry

According to the article ${ }^{17}$ this specimen [Bellsbank kimberlite, South Africa] was dated in 1991 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article ${ }^{18}$ the age of the samples is just 1 million years. If we run the various isotope ratios ${ }^{19}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

Age Dating Summary					
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr	
Summaries	Age	Age	Age	Age	
Average	5,057	5,092	10,182	$\mathbf{- 1 , 5 0 2}$	
Maximum	5,120	8,584	17,171	0	
Minimum	5,002	0	0	$-3,593$	
Difference	118	8,584	17,171	$\mathbf{3 , 5 9 3}$	
Table 5					

In tables 37 to 40 we can see some of the astounding spread of dates [million of years]. The oldest date is over 17 billion years old. The youngest is less than negative 3.5 billion years. The difference between the two is over 20 billion years. According to the article the true age of the rock is just one million years old!

208Pb/232Th, Maximum Ages

Age	Age	Age	Age
17,171	13,322	9,737	$\mathbf{7 , 9 6 8}$
15,343	13,202	9,707	7,830
15,299	13,001	9,049	7,250
15,136	11,119	8,420	6,972
15,054	10,873	8,419	$\mathbf{6 , 6 2 8}$
13,476	10,758	8,368	$\mathbf{6 , 5 7 7}$

Table 6
206Pb/238U, Maximum Ages

Age	Age	Age
$\mathbf{8 , 5 8 4}$	$\mathbf{6 , 6 5 6}$	$\mathbf{5 , 5 7 6}$
$\mathbf{7 , 9 7 5}$	$\mathbf{6 , 6 5 4}$	$\mathbf{5 , 5 2 0}$
$\mathbf{7 , 3 1 4}$	$\mathbf{6 , 5 1 8}$	$\mathbf{5 , 2 8 5}$
$\mathbf{7 , 1 8 4}$	$\mathbf{6 , 4 4 8}$	$\mathbf{5 , 1 5 9}$
$\mathbf{6 , 8 6 1}$	$\mathbf{5 , 7 5 8}$	$\mathbf{5 , 0 9 9}$

Table 7
Pb 207/206, Maximum Ages

Age	Age	Age	Age
$\mathbf{5 , 1 2 0}$	$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 4 9}$
$\mathbf{5 , 1 0 9}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 9}$	$\mathbf{5 , 0 4 5}$
$\mathbf{5 , 0 9 7}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 1}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 7 7}$	$\mathbf{5 , 0 6 5}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 2}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 3 3}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 2 2}$

Table 8

87Rb/86Sr, Minimum Ages

Age	Age	Age	Age
$-3,593$	$-2,981$	$-1,917$	$-1,323$
$-3,231$	$-2,725$	$-1,611$	$-1,245$
$-3,089$	$-2,050$	$-1,499$	$-1,229$
$-3,067$	$-1,926$	$-1,370$	$-1,194$

Table 9

Sr, Nd, And Pb Isotopes

According to the article ${ }^{\mathbf{2 0}}$ this specimen [eastern China] was dated in 1992 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article: "Observed high $\mathrm{Th} / \mathrm{U}, \mathrm{Rb} / \mathrm{Sr}, 87 \mathrm{Sr} / 86 \mathrm{Sr}$ and Delta 208 , low $\mathrm{Sm} / \mathrm{Nd}$ ratios, and a large negative Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga , support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component." ${ }^{20}$ If we run the various isotope ratios ${ }^{21}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary

Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	14,198	$\mathbf{7 , 3 6 6}$	5,014
Maximum	94,396	22,201	5,077
Minimum	79	1,117	4,945
Difference	94,317	21,083	$\mathbf{1 3 1}$

Table 10

If the true age is 2.9 billion years why so much discordance? In tables 41 to 43 we can see some of the astounding spread of dates [million of years]. The oldest date is over 94 billion years old. The youngest is 79 million years. The difference between the two is over 94 billion years. The oldest date is 1,194 times older than the youngest. According to the article the true age of the rock is 2.9 billion years old!
$\underline{\text { 208Pb/232Th, Maximum Ages }}$

Age	Age	Age	Age
$\mathbf{9 4 , 3 9 6}$	$\mathbf{3 9 , 2 6 7}$	$\mathbf{1 0 , 5 9 5}$	$\mathbf{8 , 1 7 1}$
$\mathbf{9 0 , 6 8 3}$	$\mathbf{2 6 , 2 6 6}$	$\mathbf{1 0 , 2 8 4}$	$\mathbf{7 , 7 8 9}$
$\mathbf{7 4 , 6 3 9}$	$\mathbf{1 8 , 3 3 4}$	$\mathbf{9 , 3 2 8}$	$\mathbf{7 , 6 3 8}$
$\mathbf{5 8 , 1 5 3}$	$\mathbf{1 6 , 3 5 7}$	$\mathbf{8 , 8 2 1}$	$\mathbf{7 , 3 7 5}$
$\mathbf{5 5 , 3 2 4}$	$\mathbf{1 4 , 2 5 0}$	$\mathbf{8 , 7 7 1}$	$\mathbf{7 , 3 1 7}$
$\mathbf{4 5 , 2 4 2}$	$\mathbf{1 1 , 2 1 5}$	$\mathbf{8 , 4 0 3}$	$\mathbf{5 , 7 5 9}$

Table 11

206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{2 2 , 2 0 1}$	$\mathbf{9 , 8 7 8}$	$\mathbf{7 , 3 4 8}$	$\mathbf{5 , 7 4 6}$
21,813	$\mathbf{9 , 6 5 6}$	$\mathbf{7 , 3 3 5}$	$\mathbf{5 , 7 0 0}$
$\mathbf{1 9 , 3 2 0}$	$\mathbf{9 , 0 5 4}$	$\mathbf{7 , 2 4 9}$	$\mathbf{5 , 2 1 8}$
$\mathbf{1 6 , 6 5 6}$	$\mathbf{8 , 2 4 2}$	$\mathbf{7 , 2 0 2}$	$\mathbf{5 , 2 0 1}$
$\mathbf{1 6 , 2 0 0}$	$\mathbf{8 , 0 4 4}$	$\mathbf{7 , 0 1 9}$	$\mathbf{5 , 1 6 3}$
$\mathbf{1 4 , 7 4 8}$	$\mathbf{7 , 9 9 6}$	$\mathbf{6 , 9 2 3}$	$\mathbf{5 , 1 5 9}$
$\mathbf{1 3 , 6 0 7}$	$\mathbf{7 , 5 9 0}$	$\mathbf{6 , 8 4 8}$	$\mathbf{5 , 0 9 9}$
$\mathbf{1 1 , 2 5 6}$	$\mathbf{7 , 4 2 2}$	$\mathbf{6 , 2 9 2}$	$\mathbf{4 , 8 1 2}$

Table 12

Evolution Of Reunion Hotspot Mantle

According to the article ${ }^{22}$ this specimen [Reunion and Mauritius Islands] was dated in 1995 by scientists from the University of Hawaii. According to the article: "Whole-rock powder obtained from P. Krishnamurthy. ($87 \mathrm{Sr} / 86 \mathrm{Sr}$), and em(T) are age-corrected values; $T=66 \mathrm{Ma}$ for the drill hole lavas." ${ }^{23}$ If we run the various isotope ratios ${ }^{24}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary

Age Dating Summary			
Table	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	$\mathbf{8 , 0 7 9}$	$\mathbf{4 , 4 4 9}$	$\mathbf{4 , 9 7 6}$
Maximum	$\mathbf{1 3 , 2 8 7}$	$\mathbf{6 , 2 8 5}$	$\mathbf{5 , 0 1 6}$
Minimum	$\mathbf{5 , 6 4 1}$	$\mathbf{3 , 0 1 0}$	$\mathbf{4 , 9 5 3}$
Difference	$\mathbf{7 , 6 4 6}$	$\mathbf{3 , 2 7 6}$	$\mathbf{6 3}$

Table 13
208Pb/232Th, Maximum Ages

Age	Age	Age	Age
13,287	8,725	7,363	$\mathbf{6 , 5 4 0}$
11,832	8,609	7,362	$\mathbf{6 , 4 7 9}$
11,017	7,541	7,080	$\mathbf{6 , 3 2 3}$
10,357	7,517	7,017	5,660
9,101	7,446	6,679	$\mathbf{5 , 6 4 1}$
Table 14			

206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{6 , 2 8 5}$	$\mathbf{4 , 9 0 3}$	$\mathbf{4 , 1 4 1}$	$\mathbf{3 , 8 7 5}$
$\mathbf{6 , 1 6 5}$	$\mathbf{4 , 6 3 3}$	$\mathbf{4 , 1 3 3}$	$\mathbf{3 , 6 4 7}$
$\mathbf{5 , 7 6 7}$	$\mathbf{4 , 3 4 2}$	$\mathbf{4 , 0 1 1}$	$\mathbf{3 , 5 4 8}$
$\mathbf{5 , 5 5 3}$	$\mathbf{4 , 2 5 8}$	$\mathbf{4 , 0 0 1}$	$\mathbf{3 , 3 6 9}$
$\mathbf{5 , 1 5 2}$	$\mathbf{4 , 2 2 0}$	$\mathbf{3 , 9 7 3}$	$\mathbf{3 , 0 1 0}$

Table 15

According to dating charts in the article, the true age is just 66 million years old! ${ }^{25}$

An Extremely Low U/Pb Source

According to the article ${ }^{26}$ this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The $\mathrm{Pb}-\mathrm{Pb}$ internal isochron obtained for acid leached residues of separated mineral fractions yields an age of $3940 \pm 28 \mathrm{Ma}$, which is similar to the $\mathrm{U}-\mathrm{Pb}$ (3850 ± 150 $\mathrm{Ma})$ and $\mathrm{Th}-\mathrm{Pb}(3820 \pm 290 \mathrm{Ma})$ internal isochron ages. The $\mathrm{Sm}-\mathrm{Nd}$ data for the mineral separates yield an internal isochron age of $3871 \pm 57 \mathrm{Ma}$ and an initial $143 \mathrm{Nd} / \mathrm{I} 44 \mathrm{Nd}$ value of 0.50797 ± 10. The $\mathrm{Rb}-\mathrm{Sr}$ data yield an internal isochron age of $3840 \pm 32 \mathrm{Ma} .{ }^{26}$

Rb/Sr Age Dating Summary

Average	$\mathbf{3 , 6 1 9}$
Maximum	$\mathbf{5 , 3 8 5}$
Minimum	$\mathbf{7 2 1}$
Difference	$\mathbf{4 , 6 6 4}$

Table 16
Uranium Age Dating Summary

Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U
Summaries	Age	Age	Age	Age
Average	$\mathbf{4 , 6 7 3}$	$\mathbf{8 , 0 3 5}$	$\mathbf{1 0 , 1 4 8}$	$\mathbf{4 , 5 4 6}$
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 6 , 9 2 3}$	$\mathbf{6 5 , 2 8 6}$	$\mathbf{8 , 1 2 8}$
Minimum	$\mathbf{3 , 9 6 1}$	$\mathbf{1 , 4 7 7}$	$\mathbf{2 , 5 4 2}$	$\mathbf{2 , 7 8 4}$
Difference	$\mathbf{1 , 0 5 7}$	$\mathbf{5 5 , 4 4 5}$	$\mathbf{6 2 , 7 4 4}$	$\mathbf{5 , 3 4 4}$

Table 17
The article claims that the $\mathrm{Rb} / \mathrm{Sr}$ age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ${ }^{27}$ so stupid? Or are they right and the $\mathrm{Rb} / \mathrm{Sr}$ is wrong?

208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{6 5 , 2 8 6}$	$\mathbf{1 4 , 4 3 0}$	$\mathbf{9 , 0 9 4}$	$\mathbf{5 , 4 0 1}$
$\mathbf{3 3 , 8 9 8}$	$\mathbf{1 4 , 4 1 0}$	$\mathbf{6 , 5 2 0}$	$\mathbf{5 , 3 9 6}$
25,013	$\mathbf{1 3 , 1 0 7}$	$\mathbf{6 , 1 6 6}$	$\mathbf{5 , 3 6 5}$
22,178	$\mathbf{1 2 , 7 3 8}$	$\mathbf{6 , 1 2 1}$	$\mathbf{5 , 0 9 8}$
21,204	$\mathbf{1 1 , 6 4 1}$	$\mathbf{5 , 6 7 1}$	$\mathbf{5 , 0 3 5}$
$\mathbf{1 7 , 6 1 1}$	$\mathbf{1 1 , 1 7 4}$	$\mathbf{5 , 4 0 8}$	$\mathbf{4 , 6 7 8}$
Table 18			

Table 18

$\mathbf{2 0 6 P b} / \mathbf{2 3 8 U}$, Maximum Ages			
Age	Age	Age	Age
$\mathbf{5 6 , 9 2 3}$	$\mathbf{1 0 , 8 9 5}$	$\mathbf{6 , 7 6 4}$	$\mathbf{5 , 7 7 7}$
$\mathbf{2 7 , 3 1 3}$	$\mathbf{1 0 , 2 7 8}$	$\mathbf{6 , 6 7 0}$	$\mathbf{5 , 6 2 5}$
17,873	$\mathbf{9 , 6 5 3}$	$\mathbf{6 , 4 4 9}$	$\mathbf{5 , 6 0 2}$
$\mathbf{1 3 , 6 8 0}$	$\mathbf{8 , 0 0 9}$	$\mathbf{6 , 4 3 6}$	$\mathbf{5 , 2 7 8}$
$\mathbf{1 3 , 6 2 3}$	$\mathbf{7 , 3 9 5}$	$\mathbf{6 , 0 7 0}$	$\mathbf{5 , 1 4 7}$

Table 19

The Origin Of Geochemical Diversity

According to the article ${ }^{28}$ this specimen [lunar basalt] was dated in 2007 by scientists from New Mexico University. According to $\mathrm{Rb} / \mathrm{Sr}$ isochron diagram the age of the material is 3.678 billion years. ${ }^{29}$ If we run the
various isotope ratios ${ }^{30}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary

Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	4,635	6,565	4,672
Maximum	5,111	$\mathbf{1 8 , 2 1 3}$	$\mathbf{7 , 0 9 4}$
Minimum	4,028	3,706	3,476
Difference	$\mathbf{1 , 0 8 2}$	14,506	$\mathbf{3 , 6 1 8}$
Table 20			

The dating methods all disagree with each other. There is a wide spread of dates which are just random.

Continental Lithospheric Contribution

According to the article ${ }^{31}$ this specimen from southern Portugal was dated in 1997 by scientists from France. According to the article Argon and Rubidium dating defined the so called true ages as: "The age of the intrusion and crystallization of the alkaline rocks of the Serra de Monchique is 72 Ma , based on $\mathrm{Rb} / \mathrm{Sr}$ and K / Ar dating." ${ }^{32}$ If we run the various isotope ratios ${ }^{33}$ from a table in the article through Isoplot we get the following values respectively:

Age Dating Summary				
Table	207Pb/206Pb	208Pb/232Th	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	$4,920$	$6,126$	$\mathbf{4 , 5 3 9}$	-62
Maximum	4,949	10,084	7,723	-50
Minimum	$4,894$	$2,616$	2,306	-75
Difference	55	7,467	5,417	25
Table 21				

The date of 72 million years is just a guess. The Thorium/Lead method gives dates 140 times older. The Uranium/Lead methods give dates 107 times older. Below we can see the maximum ages [million years] calculated form isotope ratios. Compare these with the so called true age!

Maximum Ages	
$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	206Pb/238U
$\mathbf{1 0 , 0 8 4}$	$\mathbf{7 , 7 2 3}$
$\mathbf{9 , 3 2 0}$	$\mathbf{7 , 0 6 0}$
$\mathbf{8 , 1 0 1}$	$\mathbf{6 , 5 0 7}$
$\mathbf{7 , 5 0 2}$	$\mathbf{6 , 3 8 7}$
$\mathbf{7 , 0 8 0}$	$\mathbf{6 , 2 0 6}$
$\mathbf{6 , 8 9 1}$	$\mathbf{5 , 1 4 3}$
$\mathbf{6 , 6 5 5}$	$\mathbf{4 , 7 3 4}$
$\mathbf{6 , 3 1 3}$	$\mathbf{4 , 1 8 6}$
5,830	$\mathbf{3 , 7 6 8}$
5,755	$\mathbf{3 , 7 6 1}$
5,029	$\mathbf{3 , 4 8 7}$

Table 22

Garnet Granulite Xenoliths

According to the article ${ }^{34}$ this specimen from the northern Baltic shield was dated in 2001 by scientists from England, USA and Russia. According to the article Argon dating defined the so called true ages as 400 to 2200 million years. ${ }^{35}$ If we run the various isotope ratios ${ }^{36}$ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary		
Table	206Pb/238U	207Pb/206Pb
Summaries	Age	Age
Average	$\mathbf{1 7 , 0 0 2}$	$\mathbf{5 , 0 4 6}$
Maximum	$\mathbf{4 0 , 0 5 9}$	$\mathbf{5 , 2 9 5}$
Minimum	$\mathbf{1 , 6 0 8}$	$\mathbf{3 , 9 0 8}$
Difference	$\mathbf{3 8 , 4 5 2}$	$\mathbf{1 , 3 8 7}$
Table 23		

Below are the maximum ages calculated from isotope ratios in tables 4 and 5 in the article:

206Pb/238U, Maximum Ages			
$206 P b / 238 \mathrm{U}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$
Age	Age	Age	Age
40,059	28,118	21,092	13,724
35,742	27,127	16,026	13,404
34,459	25,884	14,371	12,747
33,978	21,209	14,272	10,956
Table 24			

206Pb/238U, Maximum Ages

$206 \mathrm{~Pb} / 238 \mathrm{U}$	206Pb/238U	206Pb/238U
Age	Age	Age
20,648	13,724	10,956
17,527	13,404	10,049
16,336	12,622	6,792
15,626	12,165	$\mathbf{6 , 2 6 5}$
15,018	11,432	5,865

Table 25
If we run more ratios form and online supplement ${ }^{37}$ we get ages uniformly 5 billion years old. Compare these with the so called true age!

The Isotope And Trace Element Budget

According to the article ${ }^{38}$ this specimen from the Devil River Arc System, New Zealand was dated in 2000 by scientists from Germany. According to the article, the so called true ages is Cambrian. ${ }^{102}$ If we run the various isotope ratios ${ }^{39}$ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary

Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	4,970	19,143	500
Maximum	4,986	21,761	501
Minimum	4,932	$\mathbf{1 5 , 1 5 0}$	495
Difference	54	$\mathbf{6 , 6 1 1}$	$\mathbf{6}$

Table 26
The Lead/Lead dates are ten times too old and the Uranium/Lead dates are 40 times too old!

Petrogenesis And Origins Of Mid-Cretaceous

According to the article ${ }^{40}$ this specimen from the Intraplate Volcanism in Marlborough, New Zealand was dated in 2010 by scientists from New Zealand. According to the essay "the intraplate basalts in New Zealand that have been erupted intermittently over the last c. 100 Myr." ${ }^{41}$ Various tables ${ }^{42}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 10 billion year range. None of the Lead based dating methods even come vaguely close to a Cretaceous age.

Age Dating Summary

Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U
Summaries	Age	Age	Age	Age	Age
Average	$\mathbf{4 , 8 7 6}$	$\mathbf{4 , 4 1 6}$	59	$\mathbf{6 , 3 3 3}$	$\mathbf{3 , 5 1 5}$
Maximum	$\mathbf{4 , 9 4 5}$	$\mathbf{5 , 1 5 9}$	$\mathbf{8 5}$	$\mathbf{1 0 , 7 1 6}$	$\mathbf{5 , 7 1 7}$
Minimum	$\mathbf{4 , 8 3 6}$	$\mathbf{4 , 0 8 8}$	$\mathbf{1 5}$	$\mathbf{4 , 7 8 5}$	$\mathbf{2 , 7 1 2}$
Difference	$\mathbf{1 0 9}$	$\mathbf{1 , 0 7 1}$	$\mathbf{7 0}$	$\mathbf{5 , 9 3 1}$	$\mathbf{3 , 0 0 5}$

Table 27

Petrogenesis Of The Flood Basalts
According to the article ${ }^{43}$ this basalt form the Northern Kerguelen Archipelago was dated in 1998 by scientists from the Massachusetts Institute Of Technology, University of Brussels, Belgium and the San Diego State University. According to the essay: "The dominance of this isotopic signature in archipelago lavas for 30 my and its presence in $\sim 40 \mathrm{Ma}$ gabbros is consistent with the previous interpretation that these are isotopic characteristics of the Kerguelen Plume." ${ }^{43}$ Various tables ${ }^{44}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over a 44 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary

Mt Rabouillere Summary	Age	Age	Age	Age	Age
	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / \mathbf{2 3 5 U}$	$\mathbf{2 0 8 P b} / 232 \mathbf{T h}$	
Average	$\mathbf{2 1}$	$\mathbf{5 , 0 0 8}$	$\mathbf{4 , 9 0 3}$	$\mathbf{4 , 9 7 5}$	$\mathbf{6 , 1 4 2}$
Maximum	$\mathbf{3 0}$	$\mathbf{5 , 0 1 9}$	$\mathbf{5 , 3 5 5}$	$\mathbf{5 , 1 0 0}$	$\mathbf{7 , 7 8 8}$
Minimum	-7	$\mathbf{5 , 0 0 0}$	$\mathbf{4 , 3 0 5}$	$\mathbf{4 , 7 9 3}$	$\mathbf{2 , 7 9 9}$
Difference	$\mathbf{3 8}$	$\mathbf{2 0}$	$\mathbf{1 , 0 5 0}$	$\mathbf{3 0 7}$	$\mathbf{4 , 9 8 9}$

Table 28

Age Dating Summary

Mount Bureau Summary	Age	Age	Age	Age	Age
	87Rb/86Sr	207Pb/206Pb	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$
Average	27	5,006	$\mathbf{5 , 9 2 4}$	$\mathbf{5 , 1 6 1}$	$\mathbf{8 , 4 1 0}$
Maximum	30	5,020	$\mathbf{2 3 , 3 6 6}$	$\mathbf{8 , 4 9 6}$	$\mathbf{4 4 , 3 7 8}$
Minimum	24	$\mathbf{4 , 9 9 4}$	$\mathbf{3 , 3 3 5}$	$\mathbf{4 , 4 5 4}$	$\mathbf{2 , 6 5 0}$
Difference	$\mathbf{6}$	$\mathbf{2 6}$	$\mathbf{2 0 , 0 3 1}$	$\mathbf{4 , 0 4 2}$	$\mathbf{4 1 , 7 2 8}$

Table 29

Nature Of The Source Regions

According to the article ${ }^{45}$ this lava from southern Tibet was dated in 2004 by scientists from the Open University in Milton Keynes, the University of Bristol and Cardiff University. According to the essay: "Most samples are Miocene in age, ranging from 10 to 25 Ma in the south and 19 Ma to the present day in northern Tibet." ${ }^{46}$ Various tables ${ }^{47}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over an 88 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.
Age Dating Summary

North Tibet	208Pb/232Th	207Pb/235U	207Pb/206Pb	206Pb/238U
Summary	Million Years	Million Years	Million Years	Million Years
	$\mathbf{1 1 , 4 2 0}$	$\mathbf{5 , 1 3 6}$	$\mathbf{4 , 9 8 0}$	$\mathbf{7 , 7 8 3}$
87Rb/86Sr	$\mathbf{1 1 , 3 5 0}$	$\mathbf{5 , 1 3 8}$	$\mathbf{4 , 9 8 0}$	$\mathbf{8 , 0 2 3}$
Model Age	$\mathbf{1 3 , 4 7 5}$	$\mathbf{5 , 1 3 5}$	$\mathbf{4 , 9 8 7}$	$\mathbf{8 , 3 0 5}$
13 Million Years	$\mathbf{1 1 , 5 0 4}$	$\mathbf{5 , 1 4 0}$	$\mathbf{4 , 9 8 9}$	$\mathbf{7 , 3 4 9}$
	$\mathbf{8 1 , 6 1 4}$	$\mathbf{7 , 4 7 0}$	$\mathbf{4 , 9 8 7}$	$\mathbf{3 3 , 7 5 1}$
	$\mathbf{8 8 , 2 9 4}$	$\mathbf{7 , 4 7 1}$	$\mathbf{4 , 9 9 1}$	$\mathbf{3 3 , 7 4 2}$

Table 30
Age Dating Summary

South Tibet	208Pb/232Th	207Pb/235U	207Pb/206Pb	206Pb/238U
Summary	Million Years	Million Years	Million Years	Million Years
	$\mathbf{1 1 , 1 0 2}$	$\mathbf{3 1 3}$	$\mathbf{4 , 9 8 2}$	$\mathbf{6 , 3 3 1}$
	$\mathbf{6 , 0 9 2}$	$\mathbf{9 4 6}$	$\mathbf{4 , 9 1 9}$	$\mathbf{5 , 7 9 9}$
$\mathbf{8 7 R b} / 86 S r$	$\mathbf{9 , 2 6 5}$	266	$\mathbf{4 , 9 8 0}$	$\mathbf{6 , 6 8 2}$
Model Age	$\mathbf{4 , 8 2 6}$	238	$\mathbf{4 , 9 9 2}$	$\mathbf{4 , 0 8 6}$
13 Million Years	$\mathbf{8 , 2 0 5}$	294	$\mathbf{4 , 9 8 0}$	$\mathbf{5 , 5 6 7}$
	$\mathbf{2 5 , 0 1 5}$	447	$\mathbf{4 , 9 9 4}$	$\mathbf{1 3 , 3 2 8}$
	$\mathbf{3 3 , 1 9 1}$	$\mathbf{4 8 2}$	$\mathbf{4 , 9 9 2}$	$\mathbf{1 5 , 0 5 3}$

Table 31

Generation Of Palaeocene Adakitic Andesites

According to the article ${ }^{48}$ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Palaeocene (c. $55-58 \mathrm{Ma}$) adakitic andesites from the Yanji area." ${ }^{48}$ Numerous table and charts affirm this as the true age. ${ }^{49} \mathrm{~A}$ table ${ }^{50}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 10 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary

Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U	207Pb/235U
Summary	Age	Age	Age	Age	Age
Average	51	5,022	$\mathbf{8 , 9 4 1}$	8,754	$\mathbf{5 , 9 0 8}$
Maximum	66	5,024	10,518	$\mathbf{9 , 6 6 9}$	$\mathbf{6 , 0 5 2}$
Minimum	40	5,020	$\mathbf{7 , 8 0 0}$	$\mathbf{7 , 4 0 3}$	$\mathbf{5 , 6 4 1}$
Difference	26	$\mathbf{3}$	$\mathbf{2 , 7 1 8}$	$\mathbf{2 , 2 6 6}$	$\mathbf{4 1 1}$

Table 32

Evidence For A Widespread Tethyan

According to the article ${ }^{51}$ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Here, we report age-corrected $\mathrm{Nd}-\mathrm{Pb}-\mathrm{Sr}$ isotope data for 100-350 Ma basalt, diabase, and gabbro from widely separated Tethyan locations in Tibet, Iran, Albania, the eastern Himalayan syntaxis, and the seafloor off NW Australia (Fig. 1)." ${ }^{52}$ The author concludes that the rocks are from the Cretaceous and Jurassic time periods: "We collected Early Jurassic to Early Cretaceous Neotethyan magmatic rocks in 1998 from outcrops along 1300 km of the Indus-Yarlung suture zone." ${ }^{53}$ Several tables ${ }^{54}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 60 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary

Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U
Summary	Age	Age	Age	Age
Average	168	4,999	22,356	7,014
Maximum	1,739	5,236	58,796	15,747
Minimum	0	4,982	10,699	5,042
Difference	1,739	254	48,096	10,705

Table 33

208Pb/232Th, Maximum Ages			
208Pb/232Th	208Pb/232Th	208Pb/232Th	208Pb/232Th
Age	Age	Age	Age
$\mathbf{5 8 , 7 9 6}$	29,705	18,607	11,427
54,206	27,710	18,121	11,377
48,252	27,422	17,797	11,366
47,976	26,674	17,787	11,241
46,117	26,369	17,591	10,718
42,203	25,972	17,536	10,699
42,192	25,590	17,054	10,699
41,604	25,096	16,053	10,300
41,343	24,010	15,299	9,357
41,231	22,718	14,340	$\mathbf{8 , 6 3 2}$
39,637	22,307	13,845	$\mathbf{8 , 4 8 6}$
38,125	22,228	13,772	$\mathbf{8 , 0 5 7}$
37,115	21,827	13,652	$\mathbf{6 , 4 9 7}$
35,012	21,560	13,404	5,573
33,584	19,910	13,403	5,425

31,556	19,594	13,006	4,869
31,286	19,148	12,171	
30,740	18,765	11,540	

Table 34

206Pb/238U, Maximum Ages

206Pb/238U	206Pb/238U	206Pb/238U	206Pb/238U	206Pb/238U
Age	Age	Age	Age	Age
15,747	11,309	8,770	6,602	5,724
15,067	11,248	8,508	6,589	5,720
14,363	10,360	8,315	6,421	5,601
13,580	9,643	8,314	6,398	5,599
13,204	9,427	8,072	6,369	5,573
12,780	9,300	8,024	6,357	5,515
11,757	9,123	7,604	6,219	5,462
11,659	9,014	7,504	5,863	5,311
11,537	8,996	7,056	5,861	5,286
11,313	8,954	7,002	5,807	5,120

Table 35

Origin Of The Indian Ocean-Type Isotopic Signature

According to the article ${ }^{55}$ this rock formation the Philippine Sea plate was dated in 1998 by scientists from Department of Geology, Florida International University, Miami. According to the essay the true age is: "Spreading centers in three basins, the West Philippine Basin (37-60 Ma), the Parece Vela Basin (18-31 Ma), and the Shikoku Basin (17-25 Ma) are extinct, and one, the Mariana Trough ($0-6 \mathrm{Ma}$), is active (Figure 1)." ${ }^{55}$ Numerous table and charts affirm this as the true age. ${ }^{56}$ Two tables ${ }^{57}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.

Age Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	206Pb/238U	208Pb/232Th
Average	42	41	4,960	4,260	8,373
Maximum	55	54	4,989	$\mathbf{7 , 0 9 3}$	$\mathbf{1 3 , 4 3 0}$
Minimum	19	20	4,921	1,904	$\mathbf{3 , 0 6 5}$
Difference	37	33	68	$\mathbf{5 , 1 8 8}$	10,365

U-Th-Pb Dating Of Secondary Minerals

According to the article ${ }^{58}$ this rock formation Yucca Mountain, Nevada was dated in 2008 by scientists from United States Geological Survey, Geological Survey of Canada, and the Australian National University. According to the essay the true age is unknown. ${ }^{59}$ Other authors have affirmed the same problem. ${ }^{60}$ Two tables ${ }^{61}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 353 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 350,000 times older than the youngest date.

Age Dating Summary					
Dating	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age	
Average	$\mathbf{3 , 4 5 9}$	$\mathbf{4 , 8 9 1}$	$\mathbf{9 , 9 8 4}$	$\mathbf{1 2}$	
Maximum	$\mathbf{8 , 1 2 6}$	31,193	$\mathbf{3 5 2 , 9 6 2}$	$\mathbf{1 3}$	
Minimum	-445	1	2	$\mathbf{1 1}$	
Difference	$\mathbf{8 , 5 7 1}$	$\mathbf{3 1 , 1 9 2}$	$\mathbf{3 5 2 , 9 6 0}$	2	

Another table ${ }^{61}$ in the essay has a list of calculated dates. As we can see below they are all at radical disagreement with each other. There is a spread of dates of 82 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 82,000 times older than the youngest date.

Age Dating Summary					
Dating	206Pb/238U	207Pb/235U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age	
Average	$\mathbf{1 , 5 4 0}$	46	7,687	12	
Maximum	20,209	486	82,030	13	
Minimum	1	0	3	11	
Difference	$\mathbf{2 0 , 2 0 8}$	486	82,027	2	
Table 38					

Conclusion

Evolutionists Schmitz and Bowring claim that Uranium/Lead dating is 99% accurate. ${ }^{62}$ Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data used in this dating method is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html The age of 10 to 15 billion years for the age of the Universe.

2 http://en.wikipedia.org/wiki/Age of the_universe
$3 \quad$ http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
4 http://en.wikipedia.org/wiki/Age_of the_Earth
5 http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
6 The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
http://www.bgc.org/isoplot_etc/isoplot.html

Acrobat Files And Microsoft Excel Files

C:LEssays\Geo_Dating\Rubidium\Rubidium_Index.xlsm

Rocks of the Central Wyoming Province, Canadian Journal Of Earth Science, 2006, Volume 43, Pages 1419

Reference 27, Page 1436-1437
Principles of Isotopic Geology, Gunter Faure, John Wiley Publishers. New York, 1986, Pages 120, 205

Reference 27, Page 1439
History Of The Pasamonte Achondrite, Earth and Planetary Science Letters, Volume 37, 1977, Pages 1

Reference 33, Pages 3, 9
A Depleted Mantle Source For Kimberlites, Earth and Planetary Science Letters, Volume 73, 1985, Pages 269

Reference 47, Pages 270
Reference 47, Pages 271, 273
Pb, Nd and Sr isotopic geochemistry, Earth and Planetary Science Letters, Volume 105, 1991, Pages 149

Reference 66, Pages 154, 160
Reference 66, Pages 156, 157
Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113, 1992, Pages 107
Reference 68, Pages 110
Evolution of Reunion Hotspot Mantle, Earth and Planetary Science Letters, Volume 134, 1995, Pages 169-185

Reference 72, Pages 173
Reference 72, Pages 174
Reference 72, Pages 180
An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702

Reference 75, Pages 4690, 4691
The Origin of Geochemical Diversity, Geochimica et Cosmochimica Acta, Volume 71, 2007, Pages 3656

Reference 86, Pages 3661

Reference 86, Pages 3660
Continental Lithospheric Contribution, Journal Of Petrology, 1997, Volume 38, Number 1, Pages 115

Reference 95, Pages 119
Reference 95, Pages 124
Garnet Granulite Xenoliths, Journal Of Petrology, 2001, Volume 42, Number 4, Pages 731
Reference 98, Pages 742, 743
Reference 98, Pages 737-740
http://petrology.oxfordjournals.org/content/suppl/2001/04/27/42.4.731.DC1/ege033SUPPLEM.csv
The Isotope and Trace Element Budget, Journal Of Petrology, 2000, Volume 41, Number 6, Pages 759

Reference 102, Pages 772-774
Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51,
Number 10, Pages 2003-2045
Reference 110, Pages 2038
Reference 110, Pages 2024-2026
Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711-748

Reference 119, Pages 729, 730
Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 555
Reference 121, Pages 556
Reference 121, Pages 566, 575, 576
Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 661

Reference 124, Pages 676-678
Reference 124, Pages 684
Evidence for a Widespread Tethyan, Journal Of Petrology, 2005, Volume 46, Number 4, Pages 829-858

Reference 127, Pages 831
Reference 127, Pages 840
Reference 127, Pages 832-837
Origin of the Indian Ocean-type isotopic signature, Journal Of Geophysical Research, 1998, Volume 103, Number B9, Pages 20,963

56 Reference 134, Pages 20965, 20969
57 Reference 134, Pages 20968, 20969
58 U-Th-Pb Dating Of Secondary Minerals, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 2067

59 Reference 137, Pages 2067, 2068
60 Reference 137, Pages 2072-2073, 2074
61 Reference 137, Pages 2080, 2081
62 Schmitz MD, Bowring SA. An assessment of high-precision U-Pb geochronology. Geochimica et Cosmochimica Acta, 2001, Volume 65, Pages 2571-2587

www.creation.com

Very Old Rocks

By Paul Nethercott
 August 2012

Comparison of African and Canadian Diamonds

Table 1

Congo	Leslie	Grizzly	Fox	Koala	Jwaneng
$\mathbf{5 , 5 0 0}$	$\mathbf{7 , 5 0 0}$	$\mathbf{7 , 5 0 0}$	$\mathbf{6 , 5 0 0}$	$\mathbf{6 , 5 0 0}$	$\mathbf{5 , 0 0 0}$
$\mathbf{5 , 5 0 0}$	$\mathbf{7 , 0 0 0}$	$\mathbf{5 , 0 0 0}$			
$\mathbf{5 , 5 0 0}$	$\mathbf{8 , 0 0 0}$		$\mathbf{8 , 3 0 0}$	$\mathbf{7 , 5 0 0}$	$\mathbf{5 , 0 0 0}$
$\mathbf{6 , 5 0 0}$					$\mathbf{5 , 0 0 0}$
$\mathbf{6 , 5 0 0}$					
$\mathbf{6 , 5 0 0}$					

(Ages in millions of years)
These samples were dated in the year $2000{ }^{1}$ by scientists from the University of Manchester, University College London and the University of Glasgow in Scotland. Samples were taken from Canada (Fox, Grizzly, Leslie and Koala), the Democratic Republic of Congo and from Botswana (Jwaneng). The article states that "apparent ages for most diamonds are greater than the age of the Earth." ${ }^{2}$ Twenty one dates in this table ${ }^{2}$ are indeed older than the theory of evolution would allow. Fourteen are over six billion years old. The article admits that many dates are meaningless: "all apparent ages are higher than the host kimberlite eruption ages and most are higher than the 4.5 Ga geochron." ${ }^{3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." " "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{6,7}$

Geochimica et Cosmochimica Acta, 1994, Volume 58, Pages 761-771.
Geochimica et Cosmochimica Acta, 1996, Volume 60, Pages 4711-4724.

Laser argon-40-argon-39 age determinations

This dating on Moon rocks was done in 1998 by scientists from the University of Manchester in England. "The Luna 24 mission returned 160 cm of core $(0.17 \mathrm{~kg})$ from the south eastern rim of Mare Crisium in August 1976." ${ }^{8}$ Nineteen samples from this Russian space probe were dates by Argon dating as being older than the evolutionist age of the Moon. " "The presence of trapped Ar components is evident from the anomalously high apparent ages determined from the measured $40 \mathrm{Ar} / 39 \mathrm{Ar}$ values for the initial $30-40 \%$ of K release." $\mathbf{1 0}$ "Interpretation of the apparent ages is problematic because neither the clast composition nor the proportions of clast and matrix in the analysed splits could be determined." ${ }^{11}$ The current consensus among evolutionists is that the true age of the Moon is 4.5 billion years old. ${ }^{12}$

Table 2

Sample Number	Age, Million Years
lc_1	5,700
3_1	4,810
5_1	5,760
5_2	5,320
5_3	5,060
7a_1	6,930
7a_2	6,240
7a_3	5,760
7a_4	5,180
7a_7	4,810
7a_8	5,250
7a_9	4,880
7a_14	5,180
7b_1	5,400
7b_2	5,110
7c_1	6,080
7c_2	5,330
7c_4	4,990
7c_5	4,770

Meteorite: Northwest Africa 482

"Northwest Africa 482 (NWA 482) is the second largest lunar meteorite and the fifth found in the Sahara. The complete stone had a mass of 1.015 kg before cutting" ${ }^{13}$ In 2002 it was dated by scientists from the Lunar and Planetary Laboratory, University of Arizona. The results of the dating ${ }^{14}$ are summarised below in table 3 .

Table 3

Bulk Sample	Age, Million Years
	$\mathbf{9 , 6 7 0}$
	$\mathbf{8 , 5 6 0}$
	$\mathbf{8 , 1 2 7}$
	$\mathbf{6 , 2 5 6}$
Glass Sample	Age, Million Years
	$\mathbf{9 , 9 0 5}$
	$\mathbf{7 , 3 8 8}$
	$\mathbf{5 , 7 0 8}$

The author of the article explains why he thinks that the ages are so absurd: "We believe that this ${ }^{40} \mathrm{Ar}$ is probably dominated by terrestrial contamination." ${ }^{15}$

Rhenium-Osmium Isotopic Composition in Diamonds

These rock samples from the King Leopold ranges in Western Australia were dated in 2010 by scientists from the Department of Geological Sciences, University of Cape Town, South Africa and the Department of Terrestrial Magnetism, Carnegie Institution of Washington. ${ }^{16}$ The difference between the oldest and youngest dates ${ }^{17}$ as shown in table 4 is 16,254 million years. The author of the article explains why he thinks that the ages are so absurd: "The chalcopyrite inclusion from EL57 gives a model age older than the age of the Earth, evidence, perhaps, that this sulphide has suffered Re loss." ${ }^{18}$

Table 4

Sample Name	Age, Million Years
EL10	1,658
EL26	430
EL57	7,457
EL61	847
EL23	1,264
EL50	1,171
EL54_1	$-8,281$
EL54_3	-362
EL55_1	7,973
EL55_2	-104
EL65	$-5,773$

K-Ar Dating of Diamonds

This dating was done in 1983 by scientists from the Geophysical Institute, University of Tokyo, Tokyo. ${ }^{19}$ Eight dates are older than the evolutionist age of the Earth. ${ }^{20}$ The author blames Argon contamination for the bizarre dates that were obtained: "Because of the extremely small amount of argon, the hot blank corrections were similar to or even larger than the argon in the diamonds, resulting in a large uncertainty in the experimental results." ${ }^{20}$ The author admits that the dates are absolutely meaningless: "The apparent $\mathrm{K}-\mathrm{Ar}$ ages range from 150 million to nine billion years, indicating that the non radiogenic ${ }^{40} \mathrm{Ar}$ is significant. Since we have no way to make a correction for the non-radiogenic 40 Ar , the apparent $\mathrm{K}-\mathrm{Ar}$ age does not offer useful information on the age of the diamonds." ${ }^{21}$ Whichever date the author accepts is simply an arbitrary choice. Any date is just as good as any other date.

Table 5

Sample Number	Age
Premier Mine	Million Years
82701N	5,800
827021	5,200
82703A	8,200
8270413	3,300
Unidentified Origin	
821104N	4,800
821105H	5,700
821106N	4,400
821107N	5,000
8211083	4,500
8211091	9,100

821110 N	6,600
821111 N	$\mathbf{1 5 0}$

Isotopic And Petrographic Evidence

This dating was done in 2008 by scientists from the Department of Earth \& Atmospheric Sciences, University of Alberta, Canada and from the Department of Earth Sciences, The Open University, England. ${ }^{22}$ Two meteorites (Allan Hills and Northwest Africa) were dated and fourteen dates are older than the evolutionist age of the Earth. ${ }^{23}$ The article admits that the dates are meaningless: "The most striking observation is that all of NWA 1950 shock melt data, and more than half of the ages derived from ALH 77005 shock melts, are impossibly ancient, older than the Solar System itself (4.567 Ga; Fig. 6). Moreover, ancient ages ($>4.567 \mathrm{Ga}$) from shock melts are known in meteorites, in articular the Peace River L6 chondrite, studied by $\mathrm{Ar}-\mathrm{Ar}$ stepped heating and localized outgassing by a laser probe (McConville et al., 1988)." ${ }^{24}$ The article concludes with the following remarks: "Our Ar-Ar results for shock melts-ages in $>4.567 \mathrm{Ga}$ and $40 \mathrm{Ar} / 36 \mathrm{Ar}$ ratios that overlap with previous measurements of the Martian atmosphere-indicate that shock melt 'ages' are meaningless in terms of any real event." ${ }^{25}$

Table 6

Sample	Age
Number	Million Years
1	$\mathbf{8 , 0 6 4}$
2	$\mathbf{7 , 1 9 2}$
3	7,064
4	$\mathbf{6 , 8 7 2}$
5	$\mathbf{6 , 6 7 9}$
6	$\mathbf{6 , 4 2 3}$
7	$\mathbf{6 , 2 0 5}$
8	$\mathbf{6 , 1 7 9}$
9	$\mathbf{6 , 1 0 3}$
0	5,346
11	5,103
12	5,103
13	5,026
14	4,654

Rhenium-Osmium Systematics Of Diamond-Bearing Eclogites

Scientists from the Department of Geological Sciences, University of Cape Town, South Africa and the Department of Terrestrial Magnetism, Carnegie Institution of Washington, preformed this dating in 2003. ${ }^{26}$ There is a 31,600 million years between the oldest and youngest dates. ${ }^{27}$ "Thus, the Re-Os model ages, when calculated relative to a mantle undergoing chondritic Os isotopic evolution, are considerably older, varying from 3.1 to 18.5 Ga (seeTable 3 for calculation parameters). Model ages older than the age of the Earth are a clear indication that at least some of the samples have not experienced the simple single-stage Re-Os evolution
required by the model age calculation. The unrealistically old $\mathrm{Re}-\mathrm{Os}$ model ages reflect $\mathrm{Re} / \mathrm{Os}$ ratios too low to account for the high measured ${ }^{187} \mathrm{Os} /{ }^{188} \mathrm{Os} .{ }^{, 28}$ The author concluded the article with the following remarks: "The scatter in Re-Os systematics reflects a complex history for these eclogites that makes it impossible to define a precise age." ${ }^{29}$

Table 7

Sample Name	Age, Billion Years
AHM-C5	-13.1
AHM-K1/1	5.86
AHM-K4/2	4.24
AHM-K5/2	4.47
AHM-K6/1	5.12
AHM-K6/2	5.14
AHM-K13	18.5
AHM-K14	4.09
AHM-K15	13.8

A Study Of Northern Canadian Cordillera Xenoliths

These samples were dated in the year 2000 by Geologists from the University Of Montreal, Canada and from the Earth and Planetary Sciences Department, McGill University, Canada. ${ }^{30}$ The samples were taken from mountain ranges near the Canadian/Alaskan border. ${ }^{31}$ The data ${ }^{32}$ in table 8 contrasts model age versus minimum age. "The decoupling of ${ }^{187} \mathrm{Re} /{ }^{188} \mathrm{Os}$ and ${ }^{187} \mathrm{Os} /{ }^{188} \mathrm{Os}$ observed in the Canadian Cordillera xenolith data also affects the calculation of Os model ages, and leads to "future" ages or ages older than the Earth (Table 1)." ${ }^{33}$ Because the data is so bad the author admits: "Because of the apparent perturbation of the $\mathrm{Re} / \mathrm{Os}$ ratios, age information cannot be obtained from an isochron diagram." ${ }^{33}$ How can a rock that exists in the present have formed million of years in the future? Such a proposition is illogical.

Table 8

Sample	Model Age	Minimum Age
Name	Billion Years	Billion Years
AL-42	Less Than Zero	0.46
AL-46		Less Than Zero
AL-75	Less Than Zero	0.43
AL-76	Less Than Zero	0.10
AL-86	Less Than Zero	0.52
AL-88	0.32	Less Than Zero
AL-41	Less Than Zero	0.48
AL-52	Less Than Zero	0.22
XLG-29A	Less Than Zero	0.92
XLG-12A	Less Than Zero	Less Than Zero
XLG-25A	0.54	Less Than Zero
KLX-47	Less Than Zero	0.33
BTX-26	Less Than Zero	Less Than Zero

Ar-Ar Chronology Of The Martian Meteorite

The Department of Earth Sciences, University of Manchester, dated these meteorite samples in 1997. ${ }^{34}$ The samples are believed to be material ejected from the surface of Mars billion so years ago. ${ }^{34}$ If we look at the data in table 9 we see that there is a 24,648 million difference between the oldest and youngest date. ${ }^{35}$ If we look at the dates and error margins in Table 2 in the original article we see that the maximum age is 6,047 million years and the minimum is 257 million years. ${ }^{36}$

Table 9

Sample	Age	Age
Number	Minimum	Maximum
ALH84001,110		
1,300	4,626	5,236
1,450	4,345	5,013
ALH84001,111		
1,200	5,138	$\mathbf{7 , 9 8 0}$
1,300	$\mathbf{3 , 9 0 4}$	5,694
1,450	$\mathbf{4 , 1 5 1}$	$\mathbf{6 , 3 7 3}$
ALH84001,127		
400	2,660	5,062
450	4,106	5,018
500	4,012	4,550
550	4,442	4,614
700	4,036	4,942
800	4,179	$\mathbf{4 , 8 4 7}$
1,200	$\mathbf{3 , 1 7 1}$	21,477
1,400	4,920	$\mathbf{7 , 3 5 4}$

The Slave Craton, Canada

These samples from Canada were dated in 2010 by scientists from the Earth \& Atmospheric Sciences, University of Alberta, Edmonton, Canada. ${ }^{37}$ Some of the specimens were dated to be over 5.5 billion years old. ${ }^{38}$ The author tells how the isochron gave absurd ages:"In contrast, the most radiogenic sulphides in sample 1636 plot about an impossible 5 Ga model isochron." ${ }^{39}$ The admission is that the dates are impossible and meaningless:"The Re-Os isotope systematics of sulphides in sample 1636 are disturbed (Fig. 6e), with three of four samples falling on an impossible 5 Ga model isochron." ${ }^{40}$

U-Th-Pb Systematics In Lunar Highland Samples

California Institute of Technology, (Pasadena, California) dated these Lunar rocks in 1972. ${ }^{41}$ Eighty one dates are older than the evolutionist age of the Solar System. Sixty three are over five billion years old. Seven are over six billion years old. ${ }^{42}$

Table 10

Space Probe/Sample	${ }^{207} \mathbf{P b}$	${ }^{206} \mathbf{P b}$	${ }^{207} \mathbf{P b}$	${ }^{208} \mathbf{P b}$
Luna 20	${ }^{206} \mathbf{P b}$	${ }^{238} \mathrm{U}$	${ }^{235} \mathrm{U}$	${ }^{232} \mathbf{T h}$
$22001,1 \mathrm{~A}-2$	4.94	5.83	5.19	5.87
	5.00	5.20	5.06	5.01
	4.92	6.09	5.24	$\mathbf{6 . 2 4}$
$22001,1 \mathrm{~A}-2$	4.96	5.78	5.19	6.08
	5.01	5.25	5.08	5.30
	4.95	5.83	5.20	6.14
67481,26	4.92	5.49	5.08	5.80
	4.94	5.29	5.04	5.52
	4.92	5.51	5.09	5.84
64421,29	4.91	5.41	5.05	5.47
	4.94	5.00	4.96	4.91
	4.90	5.43	5.06	5.50
60501,31	4.98	5.35	5.08	5.26
	4.99	5.23	5.06	5.10
	4.97	5.36	5.09	5.28
68501,52	5.05	5.61	5.21	5.55
	5.06	5.48	5.18	5.37
	5.05	5.62	5.21	5.56
60025,65	4.64	6.64	5.18	5.64
	4.75	3.75	4.42	2.51
	4.62	7.83	5.45	7.21

If we run the Lead 207/206 ratios ${ }^{43}$ through Isoplot we get the following ages as listed in Table 11:
Table 11

Pb-207/206	Age
Ratio	Ma
$\mathbf{0 . 8 1 6 6}$	$\mathbf{4 , 9 5 1}$
$\mathbf{0 . 8 1 9 6}$	$\mathbf{4 , 9 5 6}$
$\mathbf{0 . 8 1 8 9}$	$\mathbf{4 , 9 5 5}$
$\mathbf{0 . 8 1 9 0}$	$\mathbf{4 , 9 5 5}$
$\mathbf{0 . 7 8 0 4}$	$\mathbf{4 , 8 8 6}$
$\mathbf{0 . 7 8 0 0}$	$\mathbf{4 , 8 8 6}$
$\mathbf{0 . 7 8 8 3}$	$\mathbf{4 , 9 0 1}$
$\mathbf{0 . 7 8 8 6}$	$\mathbf{4 , 9 0 1}$
$\mathbf{0 . 8 0 0 6}$	$\mathbf{4 , 9 2 3}$
$\mathbf{0 . 8 0 0 8}$	$\mathbf{4 , 9 2 3}$
$\mathbf{0 . 8 4 1 7}$	$\mathbf{4 , 9 9 4}$
$\mathbf{0 . 8 4 1 7}$	$\mathbf{4 , 9 9 4}$
$\mathbf{0 . 7 9 8 9}$	$\mathbf{4 , 9 2 0}$
$\mathbf{0 . 8 0 1 5}$	$\mathbf{4 , 9 2 4}$

The author comments on the major problems with dating these samples: "The data for all highland soils analyzed here are shown in fig. 4. All five data points lie far above the concordia curve and give ages for a
single stage model which are in excess of 4.6 AE (see table 5). The $206 \mathrm{~Pb}-238 \mathrm{U}$ ages range up to 5.83 AE . The $207 \mathrm{~Pb}-206 \mathrm{~Pb}$ ages are also very high." ${ }^{44}$ His calculations confirm the wrong ages radiometric dating gives: "Inspection of rows D and E in table 5 shows the extreme limits of the $207 \mathrm{~Pb}-206 \mathrm{~Pb}$ ages. All highland soils analyzed have $207 \mathrm{~Pb}-206 \mathrm{~Pb}$ model ages in excess of 4.90 AE . These are the highest values observed so far for samples of 'total lunar soil'., 45

A 40Ar/39Ar Geochronological Study

Rock samples from the Lower Onverwacht Volcanics in Barberton Mountain Land, South Africa were dated in 1992 by geologists from the Department of Physics, University of Toronto, and the Department of Geological Sciences, Queen's University, Kingston, Ontario, Canada. ${ }^{46}$ The youngest date was 4.5×10^{-16} years. ${ }^{47}$ How can a rock that exists in the present have formed 4,500 trillion years in the future? Such a proposition is illogical.

Table 12

Sample Number	Age, Million Years
B40-A, Third Run	$\begin{gathered} -45,000,000,000 \\ -310,000 \\ \hline \end{gathered}$
B40-E	$\begin{gathered} \hline-56,112 \\ \mathbf{3 8 6} \\ 2,663 \\ 2,667 \\ 2,672 \\ 2,943 \\ \mathbf{3 , 3 2 1} \\ \mathbf{3 , 3 1 3} \\ \mathbf{3 , 2 9 9} \end{gathered}$
KT-17B, FIRST RUN	$\begin{aligned} & \mathbf{6 , 5 5 5} \\ & \mathbf{6 , 2 9 6} \\ & \mathbf{4 , 9 6 9} \\ & \mathbf{5 , 1 1 7} \\ & \mathbf{6 , 1 6 4} \\ & \mathbf{5 , 2 2 8} \end{aligned}$
KT-17B, SECOND RUN	$\begin{aligned} & \mathbf{6 , 8 4 8} \\ & \mathbf{6 , 4 7 9} \\ & \mathbf{5 , 7 3 1} \end{aligned}$
KT-17B, Plagioclase Concentrate	$\begin{aligned} & \mathbf{6 , 2 2 4} \\ & \mathbf{6 , 9 0 4} \\ & \mathbf{6 , 5 6 0} \\ & \mathbf{6 , 5 4 4} \\ & \mathbf{5 , 1 , 5 5} \end{aligned}$
B56-A, First Run	$\begin{aligned} & \mathbf{7 , 8 1 0} \\ & \mathbf{4 , 8 6 4} \\ & \mathbf{4 , 8 9 0} \end{aligned}$

The Archaean Barberton Greenstone Belt

In 1998 diamond samples were dated by scientist from the Johannes Gutenberg University, Mainz, Germany, the Max-Planck Institute Chemistry, and the Centre Geochemistry, Strasbourg, France. ${ }^{48}$ According to the author the true ages is 2.7 billion years: "All three isotopic systems of whole rocks indicate ages of $\sim 2.7 \mathrm{Ga}$, much younger than the depositional age of the successions." "By treating the primary isochron slope of the Pb-isotopic data of sample OG 1 as a secondary isochron, an additional recalculation of the $208 \mathrm{~Pb} / 204 \mathrm{~Pb}$ isotopic values indicates that the $232 \mathrm{Th} / 238 \mathrm{U}(\mathrm{k})$ isotopic ratio of sample OG 1 has had a value of 4.78 from $\sim 2.7 \mathrm{Ga}$, which is slightly higher than the typical k value of ~ 4 (Taylor and McLennan, 1985)." ${ }^{50}$ When we run the $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ ratios listed ${ }^{51}$ in the essay through Isoplot we get dates almost 2 billion years older. A radically different answer!

Table 13

Sample	207Pb/206Pb	Sample	207Pb/206Pb
Number	Million Years	Number	Million Years
OG-1-a	4,557	OG-1-x	4,557
OG-1-b	4,544	OG-1-y	4,544
OG-1-c	4,554	OG-1-z	4,554
OG-1-d	4,476	OG-1-aa	4,476
OG-1-e	4,596	OG-1-1a	4,596
OG-1-f	4,560	OG-1-1b	4,560
OG-1-g	4,566	OG-1-2a	4,566
OG-1-h	4,499	OG-1-2b	4,499
OG-1-i	4,495	OG-1-3a	4,495
OG-1-j	4,507	OG-1-3b	4,507
OG-1-k	4,514	OG-1-7a	4,514
OG-1-I	4,518	OG-1-7b	4,518
OG-1-m	4,454	OG-1-8a	4,454
OG-1-n	4,570	OG-1-8b	4,570
OG-1-0	4,477	OG-1-9a	4,477
OG-1-p	4,517	OG-1-9b	4,517
OG-1-q	4,534	OG-1-12a	4,534
OG-1-r	4,563	OG-1-12b	4,563
OG-1-s	4,510	OG-1-13a	4,510
OG-1-t	4,535	OG-1-13b	4,535
OG-1-u	4,458	OG-1-14a	4,458
OG-1-v	4,587	OG-1-14b	4,587
OG	4,488		

Zircon U-Pb Ages Of Guyana Greenstone

These mineral samples were dated in 1982 by scientists from the Department of Geological Sciences, Cornell University, New York and the Department of Earth Sciences, University of New Hampshire ${ }_{54}{ }^{52}$ According to the article the true age of the specimen is 2250 Million years old. ${ }^{53}$ If we run the isotopic ratios ${ }^{54}$ through Isoplot we find that there is a 43,364 million difference between the oldest and youngest date.

Table 14

Sample	207Pb/206Pb	206Pb/238U	207Pb/235U
Number	Million Years	Million Years	Million Years
1a	$\mathbf{2 , 2 2 6}$	$\mathbf{2 , 2 1 8}$	$\mathbf{4 4 , 2 4 2}$
1b	$\mathbf{2 , 2 1 7}$	$\mathbf{2 , 0 2 1}$	$\mathbf{4 2 , 1 9 9}$
1d	$\mathbf{2 , 2 1 0}$	$\mathbf{1 , 8 0 6}$	$\mathbf{3 9 , 8 3 9}$
1e	$\mathbf{2 , 1 7 7}$	$\mathbf{1 , 8 3 8}$	$\mathbf{3 9 , 8 6 1}$
3a	$\mathbf{2 , 2 4 9}$	$\mathbf{1 , 8 3 5}$	$\mathbf{4 0 , 5 6 1}$
3b	$\mathbf{2 , 2 3 6}$	$\mathbf{8 7 8}$	$\mathbf{2 7 , 1 4 2}$
4a	$\mathbf{2 , 2 0 6}$	$\mathbf{1 , 6 1 7}$	$\mathbf{3 7 , 6 4 0}$
4c	$\mathbf{2 , 1 5 5}$	$\mathbf{1 , 3 2 7}$	$\mathbf{3 3 , 4 4 7}$
4d	$\mathbf{2 , 1 8 3}$	$\mathbf{1 , 3 3 9}$	$\mathbf{3 3 , 8 7 1}$
5a	$\mathbf{2 , 2 4 2}$	$\mathbf{1 , 7 7 6}$	$\mathbf{3 9 , 8 3 3}$

References

Microsoft Excel File:
C:\Essays\Geo_Dating\Iso_Plot_Dates\Good.xlsm

1 Comparison of African and Canadian Diamonds,
Geochimica et Cosmochimica Acta, 2000, Volume 64, Number 4, Pages 717-732
C:\Essays\Geo_DatinglLead_206_207\Very_Old_01.pdf
Reference 1, Page 725
3
Reference 1, Page 724

4
http://en.wikipedia.org/wiki/Age_of_the_Earth
5 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
6 http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
7 The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
8 Laser argon-40-argon-39 age determinations
Meteoritics \& Planetary Science, 1998, Volume 33, Pages 921-935
C:\Essays\Geo_DatinglLead_206_207\Very_Old_03.pdf

Lithos, 2003, Volume 71, Pages 323-336
C:\Essays\Geo_Dating\Lead_206_207\Very_Old_10.pdf
Reference 26, Page 329
Reference 26, Page 331
Reference 26, Page 333
A Study Of Northern Canadian Cordillera Xenoliths
Geochimica et Cosmochimica Acta, 2000, Volume 64, Number 17, Pages 3061-3071
C:|Essays\Geo_DatinglLead_206_207\Very_Old_11.pdf
Reference 30, Page 3063

Reference 30, Page 3064
Reference 30, Page 3067
Ar-Ar Chronology Of The Martian Meteorite
Geochimica et Cosmochimica Acta, 1997, Volume 61, Number 18, Pages 3835
C:\Essays\Geo_DatinglLead_206_207\Very_Old_12.pdf
Reference 34, Page 3839
Reference 34, Page 3842
The Slave Craton, Canada
Geochimica et Cosmochimica Acta, 2010, Volume 74, Pages 5368
C:\Essays\Geo_Dating\Lead_206_207\Very_Old_13.pdf
Reference 37, Page 5375
Reference 37, Page 5372
Reference 37, Page 5377
U-Th-Pb Systematics In Lunar Highland Samples
Earth And Planetary Science Letters, 1972, Volume 17, Pages 36-51
C:\Essays\Geo_DatinglLead_206_207\Very_Old_15.pdf
Reference 41, Page 45, 46
Reference 41, Page 42, 43
Reference 41, Page 44
Reference 41, Page 39, 40
A 40Ar/39Ar Geochronological Study
Precambrian Research, 1992, Volume 57, Pages 91-119
C:\Essays\Geo_Dating\Lead_206_207lVery_Old_16.pdf
Reference 46, Page 109
Archaean Barberton Greenstone Belt
Precambrian Research, 1998, Volume 92, Pages 129-144
C:\Essays\Geo_DatinglLead_206_207\Diamonds_01.pdf
Reference 48, Page 129
Reference 48, Page 140
Reference 48, Page 136
Zircon U-Pb Ages Of Guyana Greenstone
Precambrian Research, 1982, Volume 17, Pages 199-214
C:\Essays\Geo_Dating\Lead_206_207\Diamonds_03.pdf
Reference 52, Page 199
Reference 52, Page 207
www.creation.com

