The Neodymium-Samarium Dating Method

By Paul Nethercott October 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." ${ }^{4}$ "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ${ }^{7}$ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically with the Rubidium $/ \mathrm{Strontium}$ ages. $\mathrm{The} \mathrm{U} / \mathrm{Th} / \mathrm{Pb}$ ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang?

If we use isotopic formulas ${ }^{8-11}$ given in standard geology text we can arrive at ages from the Rubidium/Strontium and Neodymium/Samarium ratios. The formula for Rubidium/Strontium age is given as:
$t=\frac{2.303}{\lambda} \log \left(\frac{(87 S r / 86 S r)-(87 S r / 86 S r)_{0}}{(87 R b / 86 S r)}+1\right)$

Where t equals the age in years. \square equals the decay constant. $(87 \mathrm{Sr} / 86 \mathrm{Sr})=$ the current isotopic ratio. $(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=$ the initial isotopic ratio. $(87 \mathrm{Rb} / 86 \mathrm{Sr})=$ the current isotopic ratio. The same is true for the formula below.
$t=\frac{2.303}{\lambda} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(147 S m / 144 N d)}+1\right)$
Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Rocks of the Central Wyoming Province

These rock samples were dated in 2005 by scientists from the University of Wyoming. ${ }^{12}$ If we run the Rubidium/Strontium and Neodymium/Samarium isotope ratios ${ }^{13}$ from the article through Microsoft Excel we get the following values:

1. Ages Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{1 4 7 S m} / \mathbf{1 4 4 N d}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$
Average	$\mathbf{2 , 8 6 3}$	$\mathbf{2 , 8 6 9}$	$\mathbf{5 , 1 2 3}$	$\mathbf{1 7 , 8 9 9}$	$\mathbf{1 1 , 9 0 6}$
Maximum	$\mathbf{2 , 9 5 2}$	$\mathbf{2 , 9 5 4}$	$\mathbf{5 , 2 9 4}$	$\mathbf{3 8 , 7 4 6}$	$\mathbf{1 8 , 9 8 5}$
Minimum	$\mathbf{2 , 6 3 0}$	$\mathbf{2 , 6 3 1}$	$\mathbf{4 , 6 6 2}$	$\mathbf{6 , 6 5 0}$	$\mathbf{7 , 2 9 4}$
Std Deviation	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{1 5 2}$	$\mathbf{9 , 7 5 4}$	$\mathbf{3 , 2 9 8}$

The Uranium/Lead dates ${ }^{14}$ are up to sixteen billion years older than the Rubidium/Strontium and Neodymium/Samarium dates. The Thorium/Lead dates are up to thirty six billion years older. The so called true age is just a guess.

Correlated Nd, Sr And Pb Isotope Variation

According to the article ${ }^{15}$ this specimen [Walvis Ridge, Walvis Bay] was dated in 1982 by scientists from the Massachusetts Institute of Technology, and the Department of Geochemistry, University of Cape Town, South Africa. According to the article ${ }^{16}$ the age of the sample is 70 million years. If we run the various isotope ratios ${ }^{16}$ from the article through Microsoft Excel we get the following values respectively:

2. Age Dating Summary

Summary	Pb207/Pb206	147Sm/144Nd	87Rb/86Sr
Average	5,033	70	64
Maximum	5,061	70	93
Minimum	5,004	69	0
Difference	57	140	93

A Depleted Mantle Source For Kimberlites

According to the article ${ }^{17}$ this specimen [kimberlites from Zaire] was dated in 1984 by scientists from Belgium. According to the article ${ }^{18}$ the age of the samples is 70 million years. If we run the various isotope ratios ${ }^{19}$ from the article through Microsoft Excel we get the following values respectively:
3. Age Dating Summary

Summary	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$\mathbf{8 7 R b} / 86 \mathrm{Sr}$	$147 \mathrm{Sm} / 144 \mathrm{Nd}$
Average	4,977	4,810	86	72
Maximum	5,017	10,870	146	80
Minimum	4,909	1,391	50	63
Difference	108	9,478	196	17

The $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ maximum age is 34 times older than the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ maximum age. The $206 \mathrm{~Pb} / 238 \mathrm{U}$ maximum age is 74 times older than the $147 \mathrm{Sm} / 144 \mathrm{Nd}$ maximum age. There is a 10.8 billion year difference between the oldest and youngest age attained.

Sm-Nd Isotopic Systematics

According to the article ${ }^{20}$ this specimen [Enderby Land, East Antarctic] was dated in 1984 by scientists from the Australian National University, Canberra, and the Bureau of Mineral Resources, Canberra. According to the article ${ }^{20}$ the age of the sample is 3,000 million years. If we run the Rubidium/Strontium isotope ratios ${ }^{21}$ from the article through Microsoft Excel we get the following values respectively:

\section*{4. Rubidium/Strontium Age Dating Summary
 | Average | $\mathbf{- 8 7 3}$ |
| :---: | :---: |
| Maximum | $\mathbf{3 , 4 8 4}$ |
| Minimum | $\mathbf{- 2 5 , 1 2 1}$ |
| Difference | $\mathbf{2 8 , 6 0 5}$ |}

There is almost a 30 billion year difference between the oldest and youngest dates.

Strontium, Neodymium And Lead Compositions

According to the article ${ }^{\overline{22}}$ this specimen [Snake River Plain, Idaho] was dated in 1985 by scientists from the Geology Department, Rice University, Houston, Texas, the Earth Sciences Department, Open University, England and the Geology Department, Ricks College, Idaho. According to the article ${ }^{22}$ the age of the sample is 3.4 billion years. If we run the various isotope ratios ${ }^{23}$ from the article through Microsoft Excel we get the following values respectively:

5. Age Dating Summary

Summary	Pb207/Pb206	Pb207/Pb206	87Rb/86Sr
Average	$\mathbf{5 , 1 4 3}$	$\mathbf{5 , 1 3 8}$	$\mathbf{4 0 , 0 5 2}$
Maximum	$\mathbf{5 , 3 6 2}$	$\mathbf{5 , 3 1 4}$	$\mathbf{2 0 5 , 0 9 3}$
Minimum	$\mathbf{4 , 6 9 8}$	$\mathbf{4 , 9 4 0}$	$\mathbf{1 , 4 4 3}$
Difference	$\mathbf{6 6 4}$	$\mathbf{3 7 4}$	$\mathbf{2 0 3 , 6 5 0}$

The Lead isotope ratios from two different tables give dates 200 billion years younger than the Rubidium/Strontium isotope ratios. The Average age of the Rubidium/Strontium isotope ratios is 40 billion years. Below we can see some of the maximum ages and how stupid they are.
6. $87 \mathrm{Rb} / 86 \mathrm{Sr}$, Maximum Ages

Age	Age
Million Years	Million Years
205,093	11,974
189,521	11,908
188,777	$\mathbf{9 , 9 6 0}$
95,450	$\mathbf{9 , 1 0 1}$
52,643	$\mathbf{7 , 1 2 4}$
13,119	$\mathbf{6 , 0 2 2}$
12,220	5,089

Sr, Nd, and Os Isotope Geochemistry

According to the article ${ }^{24}$ this specimen [Camp Creek area, Arizona] was dated in 1987 by scientists from The University of Tennessee, the University of Michigan, the University of California, Leeds University, and the University of Chicago. According to the article ${ }^{25}$ the age of the samples is 120 million years. If we run the various isotope ratios ${ }^{26}$ from two different tables in the article through Microsoft Excel we get the following values respectively:
7. Rubidium/Strontium and Sm/Nd Age Dating Summary

Summary	$87 \mathrm{Rb} / 86 \mathrm{Sr}$	$\mathbf{8 7 \mathrm { Rb } / 8 6 \mathrm { Sr }}$	$147 \mathrm{Sm} / 144 \mathrm{Nd}$	$147 \mathrm{Sm} / 144 \mathrm{Nd}$
Average	310	103	120	159
Maximum	1,092	207	123	400
Minimum	0	0	120	119
Difference	1,092	207	3	281

The author's choice of 120 million years is just a guess.

Pb, Nd and Sr Isotopic Geochemistry

According to the article ${ }^{27}$ this specimen [Bellsbank kimberlite, South Africa] was dated in 1991 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article ${ }^{67}$ the age of the samples is just 1 million years. If we run the various isotope ratios ${ }^{68}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

8. Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	5,057	5,092	$\mathbf{1 0 , 1 8 2}$	$\mathbf{- 1 , 5 0 2}$
Maximum	$\mathbf{5 , 1 2 0}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{0}$
Minimum	$\mathbf{5 , 0 0 2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{- 3 , 5 9 3}$
Difference	$\mathbf{1 1 8}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{3 , 5 9 3}$

In tables 9 to 12 we can see some of the astounding spread of dates [million of years]. The oldest date is over 17 billion years old. The youngest is less than negative 3.5 billion years. The difference between the two is over 20 billion years. According to the article the true age of the rock is just one million years old!
9. 208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{1 7 , 1 7 1}$	$\mathbf{1 3 , 3 2 2}$	$\mathbf{9 , 7 3 7}$	$\mathbf{7 , 9 6 8}$
$\mathbf{1 5 , 3 4 3}$	13,202	$\mathbf{9 , 7 0 7}$	$\mathbf{7 , 8 3 0}$
$\mathbf{1 5 , 2 9 9}$	13,001	$\mathbf{9 , 0 4 9}$	$\mathbf{7 , 2 5 0}$
15,136	11,119	8,420	$\mathbf{6 , 9 7 2}$
15,054	10,873	8,419	$\mathbf{6 , 6 2 8}$
13,476	10,758	8,368	$\mathbf{6 , 5 7 7}$

10. 206Pb/238U, Maximum Ages

Age	Age	Age
$\mathbf{8 , 5 8 4}$	$\mathbf{6 , 6 5 6}$	$\mathbf{5 , 5 7 6}$
$\mathbf{7 , 9 7 5}$	$\mathbf{6 , 6 5 4}$	$\mathbf{5 , 5 2 0}$
$\mathbf{7 , 3 1 4}$	$\mathbf{6 , 5 1 8}$	$\mathbf{5 , 2 8 5}$
$\mathbf{7 , 1 8 4}$	$\mathbf{6 , 4 4 8}$	$\mathbf{5 , 1 5 9}$
$\mathbf{6 , 8 6 1}$	$\mathbf{5 , 7 5 8}$	$\mathbf{5 , 0 9 9}$

11. Pb 207/206, Maximum Ages

11. Pb 207/206, Maximum Ages			
Age	Age	Age	Age
$\mathbf{5 , 1 2 0}$	$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 4 9}$
$\mathbf{5 , 1 0 9}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 9}$	$\mathbf{5 , 0 4 5}$
$\mathbf{5 , 0 9 7}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 1}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 7 7}$	$\mathbf{5 , 0 6 5}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 2}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 3 3}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 2 2}$

12. $87 \mathrm{Rb} / 86 \mathrm{Sr}$, Minimum Ages

Age	Age	Age	Age
$-3,593$	$-2,981$	$-1,917$	$-1,323$
$-3,231$	$-2,725$	$-1,611$	$-1,245$
$-3,089$	$-2,050$	$-1,499$	$-1,229$
$-3,067$	$-1,926$	$-1,370$	$-1,194$

$\underline{\mathrm{Sr}, \mathrm{Nd}, \text { and } \mathrm{Pb} \text { isotopes }}$

According to the article ${ }^{30}$ this specimen [eastern China] was dated in 1992 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to
the article: "Observed high $\mathrm{Th} / \mathrm{U}, \mathrm{Rb} / \mathrm{Sr}, 87 \mathrm{Sr} / 86 \mathrm{Sr}$ and Delta 208, low $\mathrm{Sm} / \mathrm{Nd}$ ratios, and a large negative Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga , support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component." ${ }^{30}$ If we run the various isotope ratios ${ }^{31}$ from two different tables in the article through Isoplot we get the following values respectively:
13. Age Dating Summary

Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	$\mathbf{1 4 , 1 9 8}$	$\mathbf{7 , 3 6 6}$	$\mathbf{5 , 0 1 4}$
Maximum	$\mathbf{9 4 , 3 9 6}$	$\mathbf{2 2 , 2 0 1}$	$\mathbf{5 , 0 7 7}$
Minimum	$\mathbf{7 9}$	$\mathbf{1 , 1 1 7}$	$\mathbf{4 , 9 4 5}$
Difference	$\mathbf{9 4 , 3 1 7}$	$\mathbf{2 1 , 0 8 3}$	$\mathbf{1 3 1}$

If the true age is 2.9 billion years why so much discordance? In tables 14 and 15 we can see some of the astounding spread of dates [million of years]. The oldest date is over 94 billion years old. The youngest is 79 million years. The difference between the two is over 94 billion years. The oldest date is 1,194 times older than the youngest. According to the article the true age of the rock is 2.9 billion years old!
14. 208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{9 4 , 3 9 6}$	$\mathbf{3 9 , 2 6 7}$	$\mathbf{1 0 , 5 9 5}$	$\mathbf{8 , 1 7 1}$
$\mathbf{9 0 , 6 8 3}$	$\mathbf{2 6 , 2 6 6}$	$\mathbf{1 0 , 2 8 4}$	$\mathbf{7 , 7 8 9}$
$\mathbf{7 4 , 6 3 9}$	$\mathbf{1 8 , 3 3 4}$	$\mathbf{9 , 3 2 8}$	$\mathbf{7 , 6 3 8}$
$\mathbf{5 8 , 1 5 3}$	$\mathbf{1 6 , 3 5 7}$	$\mathbf{8 , 8 2 1}$	$\mathbf{7 , 3 7 5}$
$\mathbf{5 5 , 3 2 4}$	$\mathbf{1 4 , 2 5 0}$	$\mathbf{8 , 7 7 1}$	$\mathbf{7 , 3 1 7}$
$\mathbf{4 5 , 2 4 2}$	$\mathbf{1 1 , 2 1 5}$	$\mathbf{8 , 4 0 3}$	$\mathbf{5 , 7 5 9}$

15. 206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{2 2 , 2 0 1}$	$\mathbf{9 , 8 7 8}$	$\mathbf{7 , 3 4 8}$	$\mathbf{5 , 7 4 6}$
21,813	$\mathbf{9 , 6 5 6}$	$\mathbf{7 , 3 3 5}$	$\mathbf{5 , 7 0 0}$
$\mathbf{1 9 , 3 2 0}$	$\mathbf{9 , 0 5 4}$	$\mathbf{7 , 2 4 9}$	$\mathbf{5 , 2 1 8}$
$\mathbf{1 6 , 6 5 6}$	$\mathbf{8 , 2 4 2}$	$\mathbf{7 , 2 0 2}$	$\mathbf{5 , 2 0 1}$
$\mathbf{1 6 , 2 0 0}$	$\mathbf{8 , 0 4 4}$	$\mathbf{7 , 0 1 9}$	$\mathbf{5 , 1 6 3}$
$\mathbf{1 4 , 7 4 8}$	$\mathbf{7 , 9 9 6}$	$\mathbf{6 , 9 2 3}$	$\mathbf{5 , 1 5 9}$
$\mathbf{1 3 , 6 0 7}$	$\mathbf{7 , 5 9 0}$	$\mathbf{6 , 8 4 8}$	$\mathbf{5 , 0 9 9}$
$\mathbf{1 1 , 2 5 6}$	$\mathbf{7 , 4 2 2}$	$\mathbf{6 , 2 9 2}$	$\mathbf{4 , 8 1 2}$

An Extremely Low U/Pb Source

According to the article ${ }^{32}$ this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The $\mathrm{Pb}-\mathrm{Pb}$ internal isochron obtained for acid leached residues of separated mineral fractions yields an age of $3940 \pm 28 \mathrm{Ma}$, which is similar to the $\mathrm{U}-\mathrm{Pb}(3850 \pm 150 \mathrm{Ma})$ and $\mathrm{Th}-\mathrm{Pb}(3820 \pm 290$ Ma) internal isochron ages. The $\mathrm{Sm}-\mathrm{Nd}$ data for the mineral separates yield an internal isochron age of $3871 \pm 57 \mathrm{Ma}$ and an initial $143 \mathrm{Nd} / \mathrm{I} 44 \mathrm{Nd}$ value of 0.50797 ± 10. The Rb-Sr data yield an internal isochron age of $3840 \pm 32 \mathrm{Ma}$." ${ }^{32}$ If we run the various isotope ratios ${ }^{33}$ from two different tables in the article through Isoplot we get the following values respectively:
16. Rubidium/Strontium Age Dating Summary

Average	$\mathbf{3 , 6 1 9}$
Maximum	$\mathbf{5 , 3 8 5}$
Minimum	$\mathbf{7 2 1}$
Difference	$\mathbf{4 , 6 6 4}$

17. Uranium Age Dating Summary

Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U
Summaries	Age	Age	Age	Age
Average	$\mathbf{4 , 6 7 3}$	$\mathbf{8 , 0 3 5}$	$\mathbf{1 0 , 1 4 8}$	$\mathbf{4 , 5 4 6}$
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 6 , 9 2 3}$	$\mathbf{6 5 , 2 8 6}$	$\mathbf{8 , 1 2 8}$
Minimum	$\mathbf{3 , 9 6 1}$	$\mathbf{1 , 4 7 7}$	$\mathbf{2 , 5 4 2}$	$\mathbf{2 , 7 8 4}$
Difference	$\mathbf{1 , 0 5 7}$	$\mathbf{5 5 , 4 4 5}$	$\mathbf{6 2 , 7 4 4}$	$\mathbf{5 , 3 4 4}$

The article claims that the Rubidium/Strontium age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ${ }^{76}$ so stupid? Or are they right and the Rubidium/Strontium is wrong?
18. 208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{6 5 , 2 8 6}$	$\mathbf{1 4 , 4 3 0}$	$\mathbf{9 , 0 9 4}$	$\mathbf{5 , 4 0 1}$
$\mathbf{3 3 , 8 9 8}$	$\mathbf{1 4 , 4 1 0}$	$\mathbf{6 , 5 2 0}$	$\mathbf{5 , 3 9 6}$
$\mathbf{2 5 , 0 1 3}$	$\mathbf{1 3 , 1 0 7}$	$\mathbf{6 , 1 6 6}$	$\mathbf{5 , 3 6 5}$
$\mathbf{2 2 , 1 7 8}$	$\mathbf{1 2 , 7 3 8}$	$\mathbf{6 , 1 2 1}$	$\mathbf{5 , 0 9 8}$
$\mathbf{2 1 , 2 0 4}$	$\mathbf{1 1 , 6 4 1}$	$\mathbf{5 , 6 7 1}$	$\mathbf{5 , 0 3 5}$
$\mathbf{1 7 , 6 1 1}$	$\mathbf{1 1 , 1 7 4}$	$\mathbf{5 , 4 0 8}$	$\mathbf{4 , 6 7 8}$

19. 206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{5 6 , 9 2 3}$	$\mathbf{1 0 , 8 9 5}$	$\mathbf{6 , 7 6 4}$	$\mathbf{5 , 7 7 7}$
27,313	$\mathbf{1 0 , 2 7 8}$	$\mathbf{6 , 6 7 0}$	$\mathbf{5 , 6 2 5}$
$\mathbf{1 7 , 8 7 3}$	$\mathbf{9 , 6 5 3}$	$\mathbf{6 , 4 4 9}$	$\mathbf{5 , 6 0 2}$
$\mathbf{1 3 , 6 8 0}$	$\mathbf{8 , 0 0 9}$	$\mathbf{6 , 4 3 6}$	$\mathbf{5 , 2 7 8}$
$\mathbf{1 3 , 6 2 3}$	$\mathbf{7 , 3 9 5}$	$\mathbf{6 , 0 7 0}$	$\mathbf{5 , 1 4 7}$

The 72 Ma Geochemical Evolution

According to the article ${ }^{34}$ this specimen [Madeira Archipelago] was dated in 2000 by scientists from Germany. The average Lead date is 705 times older than the average Rubidium date. The true age is claimed to be 430 million years old. ${ }^{34}$ If we run the various isotope ratios ${ }^{35}$ from two different tables in the article through Isoplot we get the following values respectively:
20. Age Dating Summary

Table	207Pb/206Pb	87Rb/86Sr	147Sm/144Nd
Summaries	Age	Age	Age
Average	4,938	7	10
Maximum	5,199	55	164
Minimum	4,898	-4	0
Difference	302	59	164

If the true age is 430 million years than none of the dating methods are even vaguely close. The oldest date is 731 times older than the youngest.

Temporal Evolution of the Lithospheric Mantle

According to the article ${ }^{36}$ this specimen from the Eastern North China Craton was dated in 2009 by scientists from China, USA and Australia. Various tables ${ }^{37}$ in the essay have either calculated dates or ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 32 billion year range.

21. Age Dating Summary					
Table	147Sm/144Nd	176Lu/176Hf	187Re/188Os	87Rb/86Sr	
Summaries	Age	Age	Age	Age	
Average	291	-220	1,048	9	
Maximum	$\mathbf{3 , 0 7 9}$	$\mathbf{4 , 1 9 2}$	20,710	22	
Minimum	$-3,742$	$-9,369$	$-11,060$	0	
Difference	$\mathbf{6 , 8 2 1}$	13,561	31,770	22	

Geochemistry Of The Jurassic Oceanic Crust

According to the article ${ }^{38}$ this specimen from the Canary Islands was dated in 1998 by scientists from Germany. According to the essay: "An Sm-Nd isochron gives an age of $178 \pm 17 \mathrm{Ma}$, which agrees with the age predicted from paleomagnetic data." ${ }^{38}$ The article places the age in the late Cretaceous period. Various tables ${ }^{39}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 350 billion year range! None of the Lead or Rubidium based dating methods even come vaguely close to a Jurassic age.

22. Age Dating Summary		
Dating	87Rb/86Sr	207Pb/206Pb
Summary	Age	Age
Average	$-\mathbf{1 4 9 , 4 8 8}$	$\mathbf{4 , 9 7 4}$
Maximum	51,967	$\mathbf{5 , 0 2 4}$
Minimum	$\mathbf{- 2 9 9 , 3 4 6}$	$\mathbf{4 , 8 4 5}$
Difference	$\mathbf{3 5 1 , 3 1 3}$	$\mathbf{1 7 9}$

Origin Of The Indian Ocean-Type Isotopic Signature

According to the article ${ }^{40}$ this rock formation in the Philippine Sea plate was dated in 1998 by scientists from Department of Geology, Florida International University in Miami. According to the essay the true age is: "Spreading centers in three basins, the West Philippine Basin ($37-60 \mathrm{Ma}$), the Parece Vela Basin (18-31 Ma), and the Shikoku Basin $(17-25 \mathrm{Ma})$ are extinct, and one, the Mariana Trough ($0-6 \mathrm{Ma}$), is active (Figure 1)." ${ }^{40}$ Numerous table and charts affirm this as the true age. ${ }^{41}$ Two tables ${ }^{42}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.
23. Age Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	$206 \mathrm{~Pb} / 238 \mathrm{U}$	208Pb/232Th
Average	42	41	4,960	4,260	8,373
Maximum	55	54	4,989	7,093	13,430
Minimum	19	20	4,921	1,904	3,065
Difference	37	33	68	5,188	10,365

$\mathbf{S r}, \mathbf{N d}$, and Pb isotopes in Proterozoic Intrusives

According to the article ${ }^{\overline{43} \text { this specimen from the Grenville Front in Canadian Labrador was dated in } 1986 \text { by scientists }}$ from Lunar and Planetary Institute, Texas, the United States Geological Survey, and the Geological Survey of Canada. According to the essay: "We report Sr, Nd, and Pb isotopic compositions of mid-Proterozoic anorthosites and related
 Front in Labrador." ${ }^{43}$ The article places the age in the pre Cambrian period. Various tables ${ }^{44}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. If the Uranium/Lead dating method is used to test or calibrate the other methods then they are totally wrong.

24. Age Dating Summary		
Dating	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$
Average	$\mathbf{1 , 4 3 7}$	$\mathbf{5 , 1 3 5}$
Maximum	$\mathbf{1 , 5 0 3}$	$\mathbf{5 , 2 1 8}$
Minimum	$\mathbf{1 , 3 9 5}$	$\mathbf{4 , 9 3 1}$
Difference	$\mathbf{1 0 8}$	$\mathbf{2 8 7}$

Age and Isotopic Relationships

According to the article ${ }^{45}$ this rock formation in Antarctica was dated in 1992 by scientists from California and Germany. According to the essay the true age is: "Nevertheless, concordant $\mathrm{Ph}-\mathrm{Pb}$ model ages of pyroxene separates were obtained (20^{\prime}): $4.55784 \pm 52 \mathrm{Ga}$ for LEW and $4.55780 \pm 42 \mathrm{Ga}$ for ADOR. ${ }^{45}{ }^{45}$ Several tables ${ }^{46}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at disagreement with each other. The two on the far right show how discordant the best dating evolutionist can offer.
25. Age Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	207Pb/206Pb	207Pb/206Pb	147Sm/144Nd	147Sm/144Nd
Average	4,556	4,707	5,007	4,452	902
Maximum	4,610	5,002	5,110	4,497	1,428
Minimum	4,518	4,558	4,960	4,397	536
Difference	92	444	150	101	891

The Beni Bousera Ultramafic Complex of Northern Morocco

According to the article ${ }^{47}$ this rock formation in Morocco was dated in 1995 by scientists from New York. According to the essay the true age is: "The data are presented in Table 5. Garnet-clinopyroxene two-point Sm-Nd isochrons from samples Ga and Ii yield ages of $23.0 \pm 7.3 \mathrm{~m} . \mathrm{y}$. and 20.1 ± 6.9 m.y." ${ }^{48}$ Several tables ${ }^{49}$ in the essay have isotopic ratios which can be calculated. As we can see below the Rhenium/Osmium gives wildly discordant dates.
26. Rhenium/Osmium Age Dating Summary

Average	$\mathbf{- 2 7 2 , 4 5 5}$
Maximum	$\mathbf{- 1 2 4 , 8 8 2}$
Minimum	$-\mathbf{- 3 6 1 , 8 4 2}$
Difference	236,960

Implications for Banda Arc Magma Genesis

According to the article ${ }^{50}$ this rock formation in the Banda Arc, East Indonesia was dated in 1995 by scientists from University of Utrecht, the Royal Holloway University of London, the Free University of Amsterdam and Comell University. According to the essay the true age is: "In summary, the western part of New Guinea is characterised by Phanerozoic rocks ($600-0 \mathrm{Ma}$) in contrast to the northern part of Australia, which is dominated by Proterozoic rocks
(2200-1400 Ma)." ${ }^{51}$ Several tables ${ }^{52}$ in the essay have isotopic ratios which can be calculated. As we can see below the Lead 207/206 dating method gives wildly discordant dates. How can both methods be so at variance with each other?
27. Lead 207/206 Age Dating Summary

Average	$\mathbf{4 , 9 7 1}$
Maximum	$\mathbf{4 , 9 9 1}$
Minimum	$\mathbf{4 , 9 3 3}$
Difference	$\mathbf{5 7}$

Pb, Sr, and Nd Isotopic Features

According to the article ${ }^{53}$ this rock formation in China was dated in 2001 by scientists from China. According to the essay the true age is: "They define a $\mathrm{Rb}-\mathrm{Sr}$ isochron age of $286 \mathrm{Ma} . \mathrm{Pb}$ isotopic compositions for bitumen and crude oil from Karamay, Liaohe, and Tarim all show features of crust-mantle mixing." ${ }^{53}$ The Neodymium/Samarium dating method gives the following dates: "Thus, the Nd isotopic compositions strongly show an influence from depleted mantle (286 Ma)." ${ }^{54} \mathrm{~A}$ Neodymium/Samarium Isochron gives more dating information " $143 \mathrm{Nd} / 144 \mathrm{Nd}$ and $147 \mathrm{Sm} / 144 \mathrm{Nd}$ ratios vary within 0.51157 to 0.51197 and 0.0778 to 0.153 , respectively, and yield old, depleted mantle Nd model ages of 1.5 to $3.2 \mathrm{Ga} .{ }^{" 55}$ Several tables ${ }^{56}$ in the essay [tables one to six] have isotopic ratios which can be calculated. As we can see below the Lead 207/206 dating method gives wildly discordant dates. How can both methods be so at variance with each other?
28. Lead 207/206 Age Dating Summary

Table 1	207Pb/206Pb	87Rb/86Sr
Dating Summary	Age	Age
Average	5,009	$\mathbf{3 , 7 5 8}$
Maximum	5,029	$\mathbf{2 4 , 6 6 1}$
Minimum	4,982	$\mathbf{1 8 2}$
Difference	$\mathbf{4 7}$	$\mathbf{2 4 , 4 7 9}$

29. Lead 207/206 Age Dating Summary

Table 2	207Pb/206Pb	87Rb/86Sr
Dating Summary	Age	Age
Average	4,995	$\mathbf{6 4 6}$
Maximum	$\mathbf{5 , 0 9 7}$	$\mathbf{7 0 2}$
Minimum	4,845	565
Difference	$\mathbf{2 5 2}$	$\mathbf{1 3 8}$

30. Lead 207/206 Age Dating Summary

207Pb/206Pb	Table 3	Table 4	Table 5	Table 6
Dating Summary	Age	Age	Age	Age
Average	$\mathbf{4 , 1 5 1}$	5,060	5,027	5,079
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 , 0 6 3}$	$\mathbf{5 , 0 6 6}$	$\mathbf{6 , 4 7 1}$
Minimum	$\mathbf{1 , 7 7 6}$	5,053	$\mathbf{4 , 9 8 7}$	$\mathbf{4 , 9 7 8}$
Difference	$\mathbf{3 , 2 4 2}$	$\mathbf{9}$	$\mathbf{7 9}$	$\mathbf{1 , 4 9 3}$

Sources of Labrador Sea Sediments

According to the article ${ }^{57}$ this rock formation in Labrador was dated in 2002 by scientists from Canada. According to the essay the true age is 8,600 years old: "The newly acquired Pb isotopic data allow us to better constrain the different source areas that supplied clay-size material during the last deglaciation, until 8.6 kyr (calendar ages)." ${ }^{57} \mathrm{~A}$ table ${ }^{58}$ in the essay has Carbon-14 dates alongside isotopic ratios which can be calculated. As we can see below the Lead 207/206 dating method gives wildly discordant dates. How can both methods be so at variance with each other?
30. Lead 207/206 Versus Carbon-14 Age Dating Summary

Dating	Carbon 14 Age	Calibrated Age	207Pb/206Pb	Carbon 14 Age	Calibrated Age
Summary	Years	Years	Million Years	Dating Ratio	Dating Ratio
Average	11,656	$\mathbf{1 3 , 1 1 4}$	4,967	456,448	408,945
Maximum	22,190	$\mathbf{2 6 , 0 6 4}$	$\mathbf{4 , 9 8 2}$	$\mathbf{6 3 6 , 9 6 1}$	$\mathbf{5 8 4 , 9 3 8}$
Minimum	7,792	$\mathbf{8 , 4 8 5}$	$\mathbf{4 , 9 4 4}$	$\mathbf{2 2 3 , 7 2 2}$	$\mathbf{1 9 0 , 4 6 9}$
Difference	$\mathbf{1 4 , 3 9 8}$	$\mathbf{1 7 , 5 7 9}$	$\mathbf{3 8}$	413,239	$\mathbf{3 9 4 , 4 6 9}$

The Petrogenesis of Martian Meteorites

According to the article ${ }^{59}$ these two meteorite samples was dated in 2002 by scientists from the University of New Mexico, the Johnson Space Center, Texas and the Lockheed Engineering and Science Company, Texas. According to the essay the true age based on Neodymium/Samarium dating is 173 and 166 million years old. ${ }^{59} \mathrm{~A}$ table ${ }^{60}$ in the essay has Rubidium/Strontium isotopic ratios which can be calculated. As we can see below Rubidium/Strontium dating method gives wildly discordant dates. The Table 1 summary is the rock that is supposed to be 173 million year old. The Table 2 summary is the rock that is supposed to be 166 million year old. How can both methods be so at variance with each other?
31. Rubidium/Strontium Age Dating Summary

Dating	87Rb/86Sr	87Rb/86Sr
Summary	Table 1	Table 2
Average	579	240
Maximum	$\mathbf{3 , 2 3 3}$	697
Minimum	$\mathbf{1 7 0}$	74
Difference	$\mathbf{3 , 0 6 3}$	$\mathbf{6 2 4}$

Conclusion

Brent Dalrymple states in his anti creationist book The Age of the Earth: "Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{61}$

Looking at some of the dating it is obvious that precision is much lacking. He then goes on: "Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{62}$

I his book he gives a table ${ }^{63}$ with radiometric dates of twenty meteorites. If you run the figures through Microsoft Excel, you will find that they are 98.7% in agreement. There is only a seven percent difference between the ratio of the smallest and oldest dates. As we have seen in this essay, such a perfect fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html The age of 10 to 15 billion years for the age of the Universe.

2 http://en.wikipedia.org/wiki/Age of the universe
$3 \quad$ http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik

http://en.wikipedia.org/wiki/Age_of the_Earth
http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
http://www.bgc.org/isoplot_etc/isoplot.html
Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73
[Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].
Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990.
Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].
Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].

Rocks of the Central Wyoming Province, Canadian Journal Of Earth Science, 2006, Volume 43, Pages 1419

Reference 27, Page 1436-1437
Reference 27, Page 1439
Correlated N D, Sr And Pb Isotope Variation, Earth and Planetary Science Letters, Volume 59, 1982, Pages 327
Reference 45, Pages 330, 331
A Depleted Mantle Source For Kimberlites, Earth and Planetary Science Letters, Volume 73, 1985, Pages 269

Reference 47, Pages 270
Reference 47, Pages 271, 273
Sm-Nd Isotopic Systematics, Earth and Planetary Science Letters, Volume 71, 1984, Pages 46
Reference 50, Pages 49
Strontium, Neodymium And Lead Compositions, Earth and Planetary Science Letters,
Volume 75, 1985, Pages 354-368
Reference 52, Pages 356, 363
Sr, Nd, and Os isotope geochemistry, Earth and Planetary Science Letters, Volume 99, 1990, Pages 362
Reference 63, Pages 364
Reference 63, Pages 365, 368
Pb, Nd and Sr isotopic geochemistry, Earth and Planetary Science Letters, Volume 105, 1991, Pages 149

Reference 66, Pages 154, 160
Reference 66, Pages 156, 157
Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113, 1992, Pages 107
Reference 68, Pages 110
An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702

Reference 75, Pages 4690, 4691
The 72 Ma Geochemical Evolution, Earth and Planetary Science Letters, Volume 183, 2000, Pages 73
Reference 77, Pages 76-79
Temporal Evolution of the Lithospheric Mantle, Journal Of Petrology, 2009, Volume 50, Number 10, Pages 1857

Reference 108, Pages 1873, 1874, 1877, 1879, 1880
Geochemistry of Jurassic Oceanic Crust, Journal Of Petrology, 1998, Volume 39, Number 5, Pages 859-880

Reference 115, Pages 867, 868
Origin of the Indian Ocean-type isotopic signature, Journal Of Geophysical Research, 1998, Volume 103, Number B9, Pages 20,963

Reference 134, Pages 20965, 20969
Reference 134, Pages 20968, 20969
Sr, Nd, and Pb isotopes in Proterozoic Intrusives, Geochimica et Cosmochimica Acta, 1986, Volume 50, Pages 2571-2585

Reference 43, Pages 2575, 2577
Age and Isotopic Relationships, Geochimica et Cosmochimica Acta, 1992, Volume 56, Pages 1673-1694
Reference 43, Pages 1676, 1678, 1684, 1686, 1687

The Beni Bousera Ultramafic Complex of Northern Morocco, Geochimica et Cosmochimica Acta, 1996, Volume 60, Number 8, Pages 1429

Reference 47, Pages 1434
Reference 47, Pages 1442
Implications for Banda Arc Magma Genesis, Geochimica et Cosmochimica Acta, 1995, Volume 59, Number 12, Pages 2573-2598

Reference 50, Pages 2588
Reference 50, Pages 2580-2581
Pb, Sr, and Nd Isotopic Features, Geochimica et Cosmochimica Acta, 2001, Volume 65, Number 15,

Pages 2555-2570
54 Reference 53, Pages 2559
55 Reference 53, Pages 2560
56 Reference 53, Pages 2558, 2561-2566
57 Sources of Labrador Sea Sediments, Geochimica et Cosmochimica Acta, 2002, Volume 66, Number 14, Pages 2569

58 Reference 57, Pages 2572-2573
59 The Petrogenesis of Martian Meteorites, Geochimica et Cosmochimica Acta, 2002, Volume 66, Number 11, Pages 2037-2053

60 Reference 59, Pages 2040-2041
61 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

Reference 61, Page 23
Reference 61, Page 287

www.creation.com

