The Rubidium-Strontium Dating Method

By Paul Nethercott October 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years.¹ Standard evolutionist publications give the age of the universe as 13.75 Billion years.^{2,3}

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 <u>billion</u> years." ⁴ "The Solar System, formed between 4.53 and 4.58 billion years ago." ¹ "The age of 4.54 billion years found for the Solar System and Earth." ¹ "A valid age for the Earth of 4.55 billion years." ^{5,6}

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot⁷ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically with the Rubidium/Strontium ages. The U/Th/Pb ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang?

If we use isotopic formulas ⁸⁻¹¹ given in standard geology text we can arrive at ages from the Rb/Sr and Nd/Sm ratios. The formula for Rb/Sr age is given as:

$$t = \frac{2.303}{\lambda} \log \left(\frac{(87Sr/86Sr) - (87Sr/86Sr)_0}{(87Rb/86Sr)} + 1 \right)$$
[1]

Where t equals the age in years. λ equals the decay constant. (87Sr/86Sr) = the current isotopic ratio. $(87Sr/86Sr)_0 =$ the initial isotopic ratio. (87Rb/86Sr) = the current isotopic ratio. The same is true for the formula below.

$$t = \frac{2.303}{\lambda} \log \left(\frac{(143Nd/144Nd) - (143Nd/144Nd)_0}{(147Sm/144Nd)} + 1 \right)$$
[2]

Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Early Archaean Rocks At Fyfe Hills

These early Archaean rocks from Fyfe Hills in Antarctica were dated in 1982 by scientists form the Australian Bureau of Mineral Resources, The University of Adelaide, Adelaide, and the University of Tasmania, Hobart. ¹² Several isotopic samples ¹³ gave negative ages [-24 billion, -14 billion, -108 billion, -43 billion]. How can a rock that exists in the present and formed in the past have formed 108 billion years in the future?

8	87Rb/86Sr, Ages Dating Summary			
	Average	-3,556		
	Maximum	4,925		
	Minimum	-108,362		
Difference 113,287		113,287		
Table 1				

The Uranium/Lead ratios ¹⁴ give uniform values of 2,500 million years old. The thirty 87Rb/86Sr ratios have nineteen that give ages much older [3,039 to 4,925 Million years] and seven [1,835 to -108,362 Million years] much younger. The author's choice of age is purely arbitrary.

Shock-Melted Antarctic LL-Chondrites

These meteorite samples were dated in 1990 by scientists from the Department of Earth Sciences, Kohe University, Japan.¹⁵ According to the article¹⁶ the meteorite is 4.55 billion years old. The article claims that the maximum range of model ages is 3.11 to 7.33 billion years. ¹⁷ If we run the isotopic ratios through Microsoft Excel we get ages from 4 to 21 billion years old. Thirty six dates are over 5 billion years. Nine are over 10 billion years. If the Solar System is less than 5 billion years old how can the meteorite be older than the assumed age of the galaxy [10 billion years]?

<u>87Rb/86Sr, Maximum Ages</u>				
Age	Age	Age		
Million Years	Million Years	Million Years		
21,611	9,015	6,756		
14,466	8,988	6,556		
12,968	8,921	6,192		
12,354	8,869	6,157		
11,946	8,753	5,981		
10,868	8,675	5,677		
10,727	8,556	5,491		
10,623	8,405	5,483		
10,162	8,153	5,458		
9,888	7,590	5,453		
9,237	6,947	5,388		
9,161	6,899	5,319		
Table 2				

87Rb/86Sr, Ages Dating Summary

Average	8,585	
Maximum	21,611	
Minimum	3,969	
Difference	17,642	
Table 3		

Diamonds And Mantle-Derived Xenoliths

These samples from South African diamond mines were dated in 1979 by scientist from the University of the Witwatersrand, Johannesburg, South Africa. According to the isochron diagrams ¹⁷ the age of the sample is 2.4 billion years. If we run the Lead isotope ratios ¹⁸ through Isoplot we get the following values:

Lead Isotope Ages			
Average	4,995		
Maximum	5,249		
Minimum	4,885		
Std Deviation 122			
Table 4			

If we run the 87Rb/86Sr isotope ratios ¹⁸ through Microsoft Excel we get the following values:

	9 4	
Average	28,429	
Maximum	91,957	
Minimum	3,257	
Difference	88,700	
Table 5		

87Rb/86Sr.	Ages	Dating	Summarv
0. ===== 0.0 = 9			

There is almost a 90 billion years difference between the oldest and youngest dates. Below we can see some of the maximum ages and how stupid they are.

<u>87Rb/86Sr, Maximum Ages</u>		
Age	Age	
Million Years	Million Years	
91,957	18,139	
53,584	17,036	
51,582	15,716	
43,201	15,340	
33,542	13,633	
24,366	12,202	
Table 6		

87Rb/87Sr Isochron Of The Norton County Achondrite

This meteorite dating was done in 1967 by scientist 20 from the California Institute of Technology. In this article we will find that dating done 45 years later [2008] is giving just as absurd results. According to the Argon dating results 21 the meteorite is between 2.3 and 5.1 billion years old. If we run the 87Rb/86Sr isotope ratios 22 through Microsoft Excel we get the following values:

87Rb/86Sr,	Ages	Dating	Summary

Average	1,375	
Maximum	4,871	
Minimum	-16,277	
Difference	21,149	
Table 7		

Base and Precious Metal Veins

According to the article the dating [Coeur D'Alene Mining District, Idaho] was done in 2002 by scientists from the U.S. Geological Survey, California, the Department of Earth and Planetary Sciences, Washington University, Saint Louis, Missouri, the Lawrence Livermore National Laboratory, Livermore, California and the Sunshine Precious Metals Company, Idaho.²² If we run the 87Rb/86Sr isotope ratios²³ from Table 1 in the article through Microsoft Excel we get the following values:

<u>87Rb/86Sr, Ages Dating Summary</u>			
Average	128,708		
Maximum	508,074		
Minimum	7,990		
Difference 516,064			
Table 8			

There is a 500 billion year difference between the youngest and oldest dates. The average age is over 120 billion years. Below we can see some of the maximum ages and how stupid they are.

	0110/0001,11	ammann ingeb	
Age	Age	Age	Age
Million Years	Million Years	Million Years	Million Years
508,074	157,304	125,399	86,483
314,336	151,142	114,796	75,684
302,580	150,089	114,795	72,915
287,077	149,802	113,950	71,225
207,257	144,826	111,884	69,729
201,185	142,977	110,719	63,934
191,104	138,115	109,164	63,406
190,573	134,866	108,617	61,740
189,167	134,061	108,278	56,735
186,066	134,039	102,140	52,117
183,607	132,885	99,952	47,926
183,225	132,746	93,848	46,968
163,764	131,670	89,246	39,944
158,436	130,664	88,626	37,623
158,282	129,495	87,708	16,153
Table 9			

87Rb/86Sr, Maximum Ages

If we run the 87Rb/86Sr isotope ratios ²⁴ from Table 2 in the article through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary

Average	139,471	
Maximum	508,074	
Minimum	12,314	
Difference	520,388	
Table 10		

There is a 520 billion year difference between the youngest and oldest dates. The average age is almost 140 billion years. Below we can see some of the maximum ages and how stupid they are. The oldest dates is over half a trillion years old.

<u>87Rb/86Sr, Maximum Ages</u>				
Age	Age	Age		
Million Years	Million Years	Million Years		
508,074	147,429	87,708		
314,336	138,882	84,716		
165,542	118,679	82,294		
157,714	98,450	59,080		
157,589	91,450	45,663		
151,317	89,236	12,314		
· · · · · · · · · · · · · · · · · · ·	Table 11	· · · ·		

If we run the 87Rb/86Sr isotope ratios ²⁵ from Table 4 in the article through Microsoft Excel we get the following values:

Average	88,571			
Maximum	288,775			
Minimum	-170,232			
Difference 459,007				
Table 12				

87Rb/86Sr, Ages Dating	<u>Summary</u>
------------------------	----------------

There is a 560 billion year difference between the youngest and oldest dates. The average age is almost 90 billion years. Below we can see some of the maximum ages and how stupid they are. The oldest date is almost 300 billion years old. The youngest is negative 170 billion years old.

87Rb/86Sr, Maximum Ages						
Age	Age	Age	Age	Age	Age	
Million Years	Million Years	Million Years	Million Years	Million Years	Million Years	
288,775	97,242	94,819	93,079	90,891	85,924	
102,716	97,117	94,465	92,995	90,700	85,805	
101,380	97,033	94,453	92,972	90,536	85,263	
100,277	96,792	94,431	92,967	90,367	84,990	
99,779	96,687	94,408	92,963	90,127	83,914	
99,683	96,655	94,397	92,915	90,089	83,584	
99,369	96,602	94,345	92,878	90,018	82,639	
99,238	96,293	94,339	92,863	89,838	80,962	
99,177	96,252	94,249	92,829	89,736	80,214	
98,948	96,236	94,235	92,634	89,466	79,082	
98,765	96,043	94,139	92,630	89,236	78,053	
98,736	95,981	94,100	92,374	89,171	76,750	
98,685	95,894	93,928	92,315	88,932	76,256	
98,591	95,761	93,841	92,309	88,876	76,178	
98,436	95,711	93,766	92,205	88,540	75,048	
98,285	95,609	93,730	92,140	88,295	72,004	
98,243	95,522	93,582	92,108	87,585	70,479	
97,979	95,510	93,574	91,906	87,359	69,790	
97,830	95,388	93,504	91,674	87,260	55,157	
97,628	95,218	93,401	91,650	86,826	53,568	
97,604	95,197	93,394	91,435	86,691	51,934	
97,545	95,185	93,271	91,238	86,474	-39,207	
97,421	95,125	93,199	91,189	86,136	-89,656	
97,402	94,994	93,124	91,005	86,050	-170,232	
		T-11	. 10			

Table 13

The Munchberg Massif, Southern Germany

According the article, this dating was done in 1990 by scientists from the Koln University, Germany and the Scripps Institution of Oceanography, La Jolla, California.²⁶ There is an 8 billion year difference between the youngest and oldest dates.

Average	1,105		
Maximum	7,834		
Minimum	-296		
Difference	8,130		
Table 14			

|--|

Rocks of the Central Wyoming Province

These rock samples were dated in 2005 by scientists from the University of Wyoming. ²⁷ If we run the Rubidium/Strontium and Neodymium/Samarium isotope ratios ²⁸ from the article through Microsoft Excel we get the following values:

Ages Dating Summary					
Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	208Pb/232Th	206Pb/238U
Average	2,863	2,869	5,123	17,899	11,906
Maximum	2,952	2,954	5,294	38,746	18,985
Minimum	2,630	2,631	4,662	6,650	7,294
Std Deviation	38	39	152	9,754	3,298
Table 15					

The Uranium/Lead dates ²⁹ are up to sixteen billion years older than the Rubidium/Strontium and Neodymium/Samarium dates. The Thorium/Lead dates are up to thirty six billion years older. The so called true age is just a guess.

Basalts From Apollo 15

According the article, this Moon rock dating was done in 1972 by scientists from the California Institute of Technology, Pasadena, California. ³⁰ According to the essay the rock is 3.4 billion years old. 31 If we run the 87Rb/86Sr isotope ratios ³² from Table 4 in the article through Microsoft Excel we get the following values:

<u>Rb/Sr Age Dating Summary</u>			
Average	3,045		
Maximum	27,211		
Minimum	-3,808		
Difference	31,019		
Table 16			

Of the 21 isotopic ratios, seven were below 500 million years old. Two were over six billion years old.

History Of The Pasamonte Achondrite

According to the article this meteorite specimen was dated in 1977 by scientists from the United States Geological Survey, Colorado and the Department of Chemistry and Geochemistry, Colorado School of Mines. ³³ The article states that Rubidium/Strontium dating affirms that this material is 4.5 billion years old. ³⁴ If we run the various isotope ratios ³⁴ from two different tables in the article through Microsoft Excel we get the following values respectively:

U/II/PD Age Dating Summary				
Summary	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th
Average	3,088	3,666	4,566	2,263
Maximum	5,694	5,032	4,963	14,800
Minimum	103	865	4,440	-10,700
Difference	5,591	4,167	523	25,500
Table 17				

U/Th/Dh Ago Doting

If we run the 87Rb/86Sr isotope ratios ³⁴ from the article through Microsoft Excel we get the following values:

<u>Rb/Sr Age Dating Summary</u>				
Average	4,403			
Maximum	6,674			
Minimum 2,412				
Difference	4,262			
Table 18				

The Thorium/Lead dates are up to twelve billion years older. The so called true age is just a guess.

According to the article ³⁵ this specimen [basalts from the Afar depression in Ethiopia] was dated in 1977 by scientists from Italy and France. The article states that the formation is of the late Quaternary period and thus very young. If we run the 87Rb/86Sr isotope ratios ³⁶ from the article through Microsoft Excel we get the following values:

Average	183	
Maximum	2,260	
Minimum	-108	
Difference	2,368	
Table 19		

Rb/Sr Age Dating Summary

As far as the rocks being of a Quaternary age, the dates just don't line up.

Orogenic Lherzolite Complexes

According to the article ³⁷ this specimen from Gibraltar was dated in 1979 by scientists from France. According to the article ³⁸ the maximum age of the samples is 103 million years. If we run the 87Rb/86Sr isotope ratios ³⁹ from the two different tables in the article [Tables 2 and 3] through Microsoft Excel we get the following values respectively:

<u>Rb/Sr Age Dating Summary</u>				
Summary	Table 2	Table 3		
Average	-52,203	-29,099		
Maximum	-2,229	-1,258		
Minimum	-135,140	-102,498		
Difference	132,911	101,240		
Table 20				

The dates are light years different from what the essay claims. They are just absurd.

Isotopic Geochemistry (Os, Sr, Pb)

According to the article ⁴⁰ this specimen [the Golda Zuelva and Mboutou anorogenic complexes, North Cameroun] was dated in 1982 by scientists from France. According to the article ⁴⁰ the maximum age of the sample is 66 million years. If we run the 87Rb/86Sr isotope ratios ⁴¹ from the two different tables in the article [Tables 1 and 2] through Microsoft Excel we get the following values respectively:

Age Dating Summary			
Dating	87Rb/86Sr	87Rb/86Sr	Pb207/Pb206
Summary	Age	Age	Age
Average	321	57	4,982
Maximum	1,635	141	5,080
Minimum	52	0	4,932
Difference	1,687	141	10,012
	Table	e 21	

```
If we run the 207Pb/206Pb isotope ratios ^{42} from the article [Table 3] through Microsoft Excel we get the following values respectively:
```

Lead Isotope Ages		
Age	Age	
5,080	4,964	
5,048	4,958	
4,990	4,957	
4,984	4,938	
4,980	4,932	
4,975		
Table 22		

The so called true age is just a guess.

Cretaceous-Tertiary Boundary Sediments

According to the article ⁴³ this specimen [from the Barranco del Gredero, Caravaca, Spain] was dated in 1983 by scientists from University of California, Los Angeles, the United States Geological Survey, and the Geological Institute, University of Amsterdam. According to the article ⁴⁴ the maximum age of the sample is 65 million years. If we run the 87Rb/86Sr isotope ratios ⁴⁴ from the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary			
Average	740		
Maximum	5,157		
Minimum	-266		
Difference 5,423			
Table 23			

Out of the 16 dates derived from isotopic ratios, ten were over 100 million years old. Two were over 4 billion years old. One was negative 266 million years old. How can a rock that formed in the past have a negative age! The choice of 65 million years is just a guess.

According to the article ⁴⁵ this specimen [Walvis Ridge, Walvis Bay] was dated in 1982 by scientists from the Massachusetts Institute of Technology, and the Department of Geochemistry, University of Cape Town, South Africa. According to the article ⁴⁵ the age of the sample is 70 million years. If we run the various isotope ratios ⁴⁶ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary			
Summary	Pb207/Pb206	147Sm/144Nd	87Rb/86Sr
Average	5,033	70	64
Maximum	5,061	70	93
Minimum 5,004 69 0			
Difference	57	140	93
Table 24			

According to the article ⁴⁷ this specimen [kimberlites from Zaire] was dated in 1984 by scientists from Belgium. According to the article ⁴⁸ the age of the samples is 70 million years. If we run the various isotope ratios ⁴⁹ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary				
Summary	207Pb/206Pb	206Pb/238U	87Rb/86Sr	147Sm/144Nd
Average	4,977	4,810	86	72
Maximum	5,017	10,870	146	80
Minimum	4,909	1,391	50	63
Difference	108	9,478	196	17
Table 25				

The 207Pb/206Pb maximum age is 34 times older than the 87Rb/86Sr maximum age. The 206Pb/238U maximum age is 74 times older than the 147Sm/144Nd maximum age. There is a 10.8 billion year difference between the oldest and youngest age attained.

Sm-Nd Isotopic Systematics

According to the article ⁵⁰ this specimen [Enderby Land, East Antarctic] was dated in 1984 by scientists from the Australian National University, Canberra, and the Bureau of Mineral Resources, Canberra. According to the article ⁵⁰ the age of the sample is 3,000 million years. If we run the Rb/Sr isotope ratios ⁵¹ from the article through Microsoft Excel we get the following values respectively:

<u>Rb/Sr Age Dating Summary</u>		
Average	-873	
Maximum	3,484	
Minimum	-25,121	
Difference	28,605	
<u>Table 26</u>		

There is almost a 30 billion year difference between the oldest and youngest dates.

Strontium, Neodymium And Lead Compositions

According to the article ⁵² this specimen [Snake River Plain, Idaho] was dated in 1985 by scientists from the Geology Department, Rice University, Houston, Texas, the Earth Sciences Department, Open University, England and the Geology Department, Ricks College, Idaho. According to the article ⁵² the age of the sample is 3.4 billion years. If we run the various isotope ratios ⁵³ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary				
Summary	Pb207/Pb206	Pb207/Pb206	87Rb/86Sr	
Average	5,143	5,138	40,052	
Maximum	5,362	5,314	205,093	
Minimum 4,698 4,940 1,443				
Difference	664	374	203,650	
Table 27				

The Lead isotope ratios from two different tables give dates 200 billion years younger than the Rb/Sr isotope ratios. The Average age of the Rb/Sr isotope ratios is 40 billion years. Below we can see some of the maximum ages and how stupid they are.

<u>87Rb/86Sr, Maximum Ages</u>		
Age	Age	
Million Years	Million Years	
205,093	11,974	
189,521	11,908	
188,777	9,960	
95,450	9,101	
52,643	7,124	
13,119	6,022	
12,220	5,089	
Table 28		

Trace Element And Sr And Nd Isotope According to the article ⁵⁴ this specimen [West Germany] was dated in 1986 by scientists from Germany and California. According to the article ⁵⁴ the age of the samples is 2 billion years. If we run the various isotope ratios ⁵⁵ from the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary		
Average	41,573	
Maximum	175,289	
Minimum -30,734		
Difference 206,022		
Table 29		

Many of the Rb/Sr isotopic ratios would not produce proper ages. Those that did gave absurd values. Below are some dates taken from another table ⁵⁶ in the original article.

TABLE 5	Sm-Nd	Rb-Sr	
Sample	Age	Age	
Ib/K1	2,090	2,210	
Ib/8	2,900	1,790	
D1	1,450	1,660	
Ib/5	1,100	1,430	
D45	1,630	530	
D58	3,200	1,930	
Table 30			

Rb/Sr and Sm/Nd Age Dating Summary

The Southeast Australian Lithosphere Mantle

According to the article ⁵⁷ this specimen was dated in 1987 by scientists from The Australian National University. According to the article ⁵⁸ the age of the samples is 1.5 billion years. If we run the various isotope ratios ⁵⁹ from two different tables in the article through Microsoft Excel we get the following values respectively:

<u>Rb/Sr Age Dating Summary</u>			
Average	1,905	42,639	
Maximum	11,657	218,042	
Minimum	134	-15,716	
Difference 11,523 233,758			
<u>Table 31</u>			

Below we can see the maximum ages obtained from the second table. The oldest age is 18 times older than the Big Bang explosion. It is sixty two times older than the so called age of the Earth.

<u>87Rb/86Sr, Maximum Ages</u>		
Age	Age	
218,042	45,207	
64,770	38,581	
54,457	26,113	
48,074	17,246	
45,734	11,813	
Table 32		

Strontium, Neodymium and Lead Isotopic

According to the article ⁶⁰ this specimen was dated in 1988 by scientists from the Department of Terrestrial Magnetism. Carnegie Institution of Washington. Throughout the article the author admits that the dates are contradicting and unreliable: "For sample 7541. the apatite eclogite, the range observed in both Rh/Sr and Sm/Nd for the whole-rock and mineral separates is quite small resulting in very imprecise "ages" of 400 Ma for Rb-Sr and 1110 Ma for Sm-Nd." ⁶¹ If we run the Lead isotope ratios ⁶² from the article through Microsoft Excel we get the following values respectively:

Age	Age	
4,933	4,928	
4,961	4,956	
4,952	4,947	
4,952	4,957	
4,942	4,927	
4,978	4,952	
4,940	4,954	
4,947		
Table 33		

Pb 207/206 Age Dating Summary

Sr, Nd, and Os Isotope Geochemistry

According to the article ⁶³ this specimen [Camp Creek area, Arizona] was dated in 1987 by scientists from The University of Tennessee, the University of Michigan, the University of California, Leeds University, and the University of Chicago. According to the article ⁶⁴ the age of the samples is 120 million years. If we run the various isotope ratios ⁶⁵ from two different tables in the article through Microsoft Excel we get the following values respectively:

- -- --- -

<u>Rb/Sr and Sm/Nd Age Dating Summary</u>				
Summary	87Rb/86Sr	87Rb/86Sr	147Sm/144Nd	147Sm/144Nd
Average	310	103	120	159
Maximum	1,092	207	123	400
Minimum	0	0	120	119
Difference	1,092	207	3	281
Table 34				

The author's choice of 120 million years is just a guess.

According to the article ⁶⁶ this specimen [Bellsbank kimberlite, South Africa] was dated in 1991 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article ⁶⁷ the age of the samples is just 1 million years. If we run the various isotope ratios ⁶⁸ from two different tables in the article through Microsoft Excel we get the following values respectively:

Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	5,057	5,092	10,182	-1,502
Maximum	5,120	8,584	17,171	0
Minimum	5,002	0	0	-3,593
Difference	118	8,584	17,171	3,593
Table 35				

In tables 36 to 39 we can see some of the astounding spread of dates [million of years]. The oldest date is over 17 billion years old. The youngest is less than negative 3.5 billion years. The difference between the two is over 20 billion years. According to the article the true age of the rock is just one million years old!

Age	Age	Age	Age
17,171	13,322	9,737	7,968
15,343	13,202	9,707	7,830
15,299	13,001	9,049	7,250
15,136	11,119	8,420	6,972
15,054	10,873	8,419	6,628
13,476	10,758	8,368	6,577
	Table	36	

208Pb/252Th, Maximum Ages

Table 36

206Pb/238U, Maximum Ages

Age	Age	Age
8,584	6,656	5,576
7,975	6,654	5,520
7,314	6,518	5,285
7,184	6,448	5,159
6,861	5,758	5,099
Table 37		

Pb 207/206, Maximum Ages

Age	Age	Age	Age	
5,120	5,067	5,060	5,049	
5,109	5,066	5,059	5,045	
5,097	5,066	5,051	5,044	
5,077	5,065	5,050	5,044	
5,067	5,062	5,050	5,033	
5,067	5,060	5,050	5,022	
	Table 38			

87Rb/86Sr, Minimum Ages

Age	Age	Age	Age
-3,593	-2,981	-1,917	-1,323
-3,231	-2,725	-1,611	-1,245
-3,089	-2,050	-1,499	-1,229
-3,067	-1,926	-1,370	-1,194
Table 39			

Sr, Nd, and Pb isotopes

According to the article ⁶⁸ this specimen [eastern China] was dated in 1992 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article: "Observed high Th/U, Rb/Sr, 87Sr/86 Sr and Delta 208, low Sm/Nd ratios, and a large negative Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga, support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component." ⁶⁸ If we run the various isotope ratios ⁶⁹ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	14,198	7,366	5,014
Maximum	94,396	22,201	5,077
Minimum	79	1,117	4,945
Difference	94,317	21,083	131
Table 40			

If the true age is 2.9 billion years why so much discordance? In tables 41 to 43 we can see some of the astounding spread of dates [million of years]. The oldest date is over 94 billion years old. The youngest is 79 million years. The difference between the two is over 94 billion years. The oldest date is 1,194 times older than the youngest. According to the article the true age of the rock is 2.9 billion years old!

<u>208P</u>	<u>208Pb/232Th, Maximum Ages</u>			
Age	Age	Age	Age	
94,396	39,267	10,595	8,171	
90,683	26,266	10,284	7,789	
74,639	18,334	9,328	7,638	
58,153	16,357	8,821	7,375	
55,324	14,250	8,771	7,317	
45,242	11,215	8,403	5,759	
Table 41				

206Pb/238U, Maximum Ages			
Age	Age	Age	Age
22,201	9,878	7,348	5,746
21,813	9,656	7,335	5,700
19,320	9,054	7,249	5,218
16,656	8,242	7,202	5,201
16,200	8,044	7,019	5,163
14,748	7,996	6,923	5,159
13,607	7,590	6,848	5,099
11,256	7,422	6,292	4,812
Table 42			

Table 42

Production of Jurassic Rhyolite

According to the article ⁷⁰ this specimen [Patagonia, South America] was dated in 1994 by scientists from the British Antarctic Survey, National University, Argentina. According to the article: "Primary magmas of andesitic composition were generated by partial melting of mafic" Grenvillian" lower crust, indentified by depleted-mantle model ages of 1150-1600 Ma." ⁷⁰ If we run the various isotope ratios ⁷¹ from two different tables in the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary		
Average	432	
Maximum	17,387	
Minimum	-4,633	
Difference	22,020	
Table 43		

Evolution of Reunion Hotspot Mantle

According to the article ⁷² this specimen [Reunion and Mauritius Islands] was dated in 1995 by scientists from the University of Hawaii. According to the article: "Whole-rock powder obtained from P. Krishnamurthy. (87Sr/86 Sr), and em(T) are age-corrected values; T = 66 Ma for the drill hole lavas." ⁷³ If we run the various isotope ratios ⁷⁴ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary				
Table	232Th/208Pb	206Pb/238U	207Pb/206Pb	
Summaries	Age	Age	Age	
Average	8,079	4,449	4,976	
Maximum	13,287	6,285	5,016	
Minimum	5,641	3,010	4,953	
Difference	7,646	3,276	63	
Table 44				

Age	Age	Age	Age
13,287	8,725	7,363	6,540
11,832	8,609	7,362	6,479
11,017	7,541	7,080	6,323
10,357	7,517	7,017	5,660
9,101	7,446	6,679	5,641
	Table	15	

208Pb/232Th, Maximum Ages

Table 45

206Pb/238U, Maximum Ages

Age	Age	Age	Age	
6,285	4,903	4,141	3,875	
6,165	4,633	4,133	3,647	
5,767	4,342	4,011	3,548	
5,553	4,258	4,001	3,369	
5,152	4,220	3,973	3,010	
Table 46				

According to dating charts in the article, the true age is just 66 million years old!⁷⁴

An Extremely Low U/Pb Source

According to the article ⁷⁵ this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The Pb-Pb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ± 28 Ma, which is similar to the U-Pb (3850 ± 150 Ma) and Th-Pb (3820 ± 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ± 57 Ma and an initial 143Nd/I44Nd value of 0.50797 ± 10 . The Rb-Sr data yield an internal isochron age of 3840 ± 32 Ma."⁷⁵

<u>Rb/Sr Age Dating Summary</u>		
Average	3,619	
Maximum	5,385	
Minimum	721	
Difference 4,664		
Ta	blo 47	

<u> Table 47</u>

Oralinum Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U
Summaries	Age	Age	Age	Age
Average	4,673	8,035	10,148	4,546
Maximum	5,018	56,923	65,286	8,128
Minimum	3,961	1,477	2,542	2,784
Difference	1,057	55,445	62,744	5,344
Table 48				

Ura	anium	Age	Dating	Summary

The article claims that the Rb/Sr age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ⁷⁶ so stupid? Or are they right and the Rb/Sr is wrong?

208Pb/232Th, Maximum Ages			
Age	Age	Age	Age
65,286	14,430	9,094	5,401
33,898	14,410	6,520	5,396
25,013	13,107	6,166	5,365
22,178	12,738	6,121	5,098
21,204	11,641	5,671	5,035
17,611	11,174	5,408	4,678
	Table	49	•

206Pb/238U, Maximum Ages

Age	Age	Age	Age	
56,923	10,895	6,764	5,777	
27,313	10,278	6,670	5,625	
17,873	9,653	6,449	5,602	
13,680	8,009	6,436	5,278	
13,623	7,395	6,070	5,147	
Table 50				

The 72 Ma Geochemical Evolution According to the article ⁷⁷ this specimen [Madeira Archipelago] was dated in 2000 by scientists from Germany. The average Lead date is 705 times older than the average Rubidium date. The true age is claimed to be 430 million years old. ⁷⁷ If we run the various isotope ratios ⁷⁸ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary				
Table	207Pb/206Pb	87Rb/86Sr	147Sm/144Nd	
Summaries	Age	Age	Age	
Average	4,938	7	10	
Maximum	5,199	55	164	
Minimum	4,898	-4	0	
Difference	302	59	164	
Table 51				

If the true age is 430 million years than none of the dating methods are even vaguely close. The oldest date is 731 times older than the youngest.

The Himalayan Collision Zone

According to the article ⁷⁹ this specimen [East Tibet] was dated in 2000 by scientists from Germany. As far as the age goes the author states: "Partial melting of the mantle source was most likely triggered by a Cenozoic asthenospheric mantle diapir related to Indian-Asian continent collision at 65-45Ma. Rising and emplacement of carbonatitic magmas with coeval potassium-rich magmas took place in the tectonic regime of the transition from transpression to transtension at Eocene/Oligocene boundary in the EIACZ." ⁸⁰ He also states: "The initial "Nd values and 87Sr / 86Sr ratios were calculated at *t*=35Ma." ⁸¹ If we run the various isotope ratios ⁸² from two different tables in the article through Isoplot we get the following values respectively:

<u>1 0 207/200, Dating Summary</u>			
Dating	207Pb/206Pb	87Rb/86Sr	
Summary	Age	Age	
Average	5,015	0	
Maximum	5,023	0	
Minimum	4,976	0	
Difference	47	0	
Table 52			

Pb	207/206,	Dating	Summary 5 1

If the specimen is of the Eocene era [Less than 100 million years old] how can the Lead/Lead dating produce such rubbish? If we run the Rb/Sr ratios through Microsoft Excel we get zero ages!

Evidence for a Non Magmatic component

According to the article ⁸³ this specimen [Yukon, Canada] was dated in 2001 by Canadian scientists from the University of Alberta, and Dalhousie University, Halifax. According to Argon dating the age of the material is 70 million years.⁸⁴ If we run the various isotope ratios ⁸⁵ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Table	207Pb/206Pb	87Rb/86Sr	
Summaries	Age	Age	
Average	4,955	71	
Maximum	5,214	101	
Minimum	4,918	60	
Difference	296	41	
Table 53			

If we look at the average ages we see that there is a 7 thousand percent difference between them! If we compare the youngest and oldest dates we see that there is an 8,540 percent difference between them.

The Origin Of Geochemical Diversity

According to the article ⁸⁶ this specimen [lunar basalt] was dated in 2007 by scientists from New Mexico University. According to Rb/Sr isochron diagram the age of the material is 3.678 billion years.⁸⁷ If we run the various isotope ratios ⁸⁸ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	4,635	6,565	4,672
Maximum	5,111	18,213	7,094
Minimum	4,028	3,706	3,476
Difference	1,082	14,506	3,618

Table 54

The dating methods all disagree with each other. There is a wide spread of dates which are just random.

Mechanisms For Incompatible-Element Enrichment

According to the article ⁸⁹ this specimen [meteorite Northwest Africa] was dated in 2009 by scientists from Lawrence Livermore National Laboratory, University of New Mexico, the University of California, Berkeley, and Arizona State University. The author states: "Rubidium-Strontium isotopic analyses yield an age of 2,947 ± 16 Ma" If we run the various isotope ratios ⁹⁰ from a table in the article through Microsoft Excel we get the following values respectively:

<u>Rb/Sr Age Dating Summary</u>		
Average	5,483	
Maximum	13,497	
Minimum	1,917	
Difference	11,579	
Table 55		

Out of the eleven isotope ratios, two returned dates over ten billion years old.

Constraints On Martian Differentiation Processes

According to the article ⁹¹ this specimen [Martian meteorite] was dated in 1997 by scientists from the NASA Johnson Space Centre, Houston, Texas, the University of Tennessee, and Lockheed Martin, Houston, Texas. According to the article ⁹¹ the age range is: "The neodymium isotopic systematics of QUE 94201 are not consistent with significant melting between 4.525 Ga and 327 Ma." If we run the various isotope ratios ⁹² from two different tables [1 and 4] in the article through Microsoft Excel we get the following values respectively:

KD/SI	Age Dating Su	inniai y	
Summary	Table 1	Table 4	
Average	618	-34,834	
Maximum	1,765	4,642	
Minimum	-98	-118,922	
Difference	1,668	123,564	
Table 56			

Rh/Sr Age Dating Summary

Instead of having a 4.2 billion year spread we have a 123 billion year spread of dates. Both tables in the article give dates way off the so called true age.

Geochemistry of the Volcan de l'Androy

According to the article ⁹³ this specimen from the Androy massif in south eastern Madagascar was dated in 2008 by scientists from the University Of Hawaii. According to the article Argon and Rubidium dating defined the so called true ages as: "The R2 rhyolites define a whole-rock Rb/Sr isochron of 84 Ma, the same, within error, as an 40Ar/39Ar sanidine age reported by earlier workers." ⁹³ If we run the various isotope ratios ⁹⁴ from a table in the article through Isoplot we get the following values respectively:

Pb 207/206, Dating Summary				
Average	5,004	4,999		
Maximum	5,048	5,029		
Minimum	4,980	4,984		
Difference 67 18				
<u>Table 57</u>				

The Lead dating give ages that are sixty times older than the Rb/Sr dates.

According to the article ⁹⁵ this specimen from southern Portugal was dated in 1997 by scientists from France. According to the article Argon and Rubidium dating defined the so called true ages as: "The age of the intrusion and crystallization of the alkaline rocks of the Serra de Monchique is 72 Ma, based on Rb/Sr and K/Ar dating." ⁹⁶ If we run the various isotope ratios⁹⁷ from a table in the article through Isoplot we get the following values respectively:

Age Dating Summary				
Table	207Pb/206Pb	208Pb/232Th	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	4,920	6,126	4,539	-62
Maximum	4,949	10,084	7,723	-50
Minimum	4,894	2,616	2,306	-75
Difference	55	7,467	5,417	25
Table 58				

The date of 72 million years is just a guess. The Thorium/Lead method gives dates 140 times older. The Uranium/Lead methods give dates 107 times older. Below we can see the maximum ages [million years] calculated form isotope ratios. Compare these with the so called true age!

<u>Maximum Ages</u>			
208Pb/232Th	206Pb/238U		
10,084	7,723		
9,320	7,060		
8,101	6,507		
7,502	6,387		
7,080	6,206		
6,891	5,143		
6,655	4,734		
6,313	4,186		
5,830	3,768		
5,755	3,761		
5,029	3,487		
Table 59			

Garnet Granulite Xenoliths

According to the article ⁹⁸ this specimen from the northern Baltic shield was dated in 2001 by scientists from England, USA and Russia. According to the article Argon dating defined the so called true ages as 400 to 2200 million years. ⁹⁹ If we run the various isotope ratios ¹⁰⁰ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Table	206Pb/238U	207Pb/206Pb	
Summaries	Age	Age	
Average	17,002	5,046	
Maximum	40,059	5,295	
Minimum	1,608	3,908	
Difference	38,452	1,387	
Table 60			

206Pb/238U, Maximum Ages			
206Pb/238U	206Pb/238U	206Pb/238U	206Pb/238U
Age	Age	Age	Age
40,059	28,118	21,092	13,724
35,742	27,127	16,026	13,404
34,459	25,884	14,371	12,747
33,978	21,209	14,272	10,956
Table 61			

Below are the maximum ages calculated from isotope ratios in tables 4 and 5 in the article:

<u>206Pb</u>	/238U,	Maximur	n Ages

206Pb/238U	206Pb/238U	206Pb/238U	
Age	Age	Age	
20,648	13,724	10,956	
17,527	13,404	10,049	
16,336	12,622	6,792	
15,626	12,165	6,265	
15,018	11,432	5,865	
Table 62			

If we run more ratios form and online supplement we get ages uniformly 5 billion years old. Compare these with the so called true age!

The Isotope and Trace Element Budget

According to the article ¹⁰² this specimen from the Devil River Arc System, New Zealand was dated in 2000 by scientists from Germany. According to the article, the so called true ages is Cambrian. ¹⁰² If we run the various isotope ratios ¹⁰³ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	4,970	19,143	500
Maximum	4,986	21,761	501
Minimum	4,932	15,150	495
Difference	54	6,611	6
Table 63			

<u> Table 63</u>

The Lead/Lead dates are ten times too old and the Uranium/Lead dates are 40 times too old!

Fluid Flow and Diffusion

According to the article ¹⁰⁴ this specimen from the Waterville Formation in south–central Maine, USA, was dated in 1997 by scientists from England and USA. According to the article, the so called true age is: "the 376±6 Ma Rb–Sr whole-rock age of the syn-metamorphic Hallowell pluton." ¹⁰⁴ According to isochron diagrams in the article ¹⁰⁵ the model age is between 342 to 391 million years. The article has an age range diagram ¹⁰⁶ which claims that the maximum age is 425 million years. If we run the various isotope ratios ¹⁰⁷ from table 4 in the article through Isoplot we get the following values respectively:

KD/SI Age Dating	<u>g Summar y</u>	
Average	746	
Maximum	2,063	
Minimum	316	
Difference	1,747	
Table 64		

KD/SI Age Dating Summary

Out of the 150 isotopic ratios in the essay, 134 gave ages greater than the so called maximum age limit. Twenty six gave ages that were more than twice the maximum limit.

Temporal Evolution of the Lithospheric Mantle According to the article ¹⁰⁸ this specimen from the Eastern North China Craton was dated in 2009 by scientists from China, USA and Australia. Various tables ¹⁰⁹ in the essay have either calculated dates or ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 32 billion year range.

Age Dating Summary					
Table	147Sm/144Nd	176Lu/176Hf	187Re/188Os	87Rb/86Sr	
Summaries	Age	Age	Age	Age	
Average	291	-220	1,048	9	
Maximum	3,079	4,192	20,710	22	
Minimum	-3,742	-9,369	-11,060	0	
Difference	6,821	13,561	31,770	22	
		Table 65			

Petrogenesis and Origins of Mid-Cretaceous

According to the article ¹¹⁰ this specimen from the Intraplate Volcanism in Marlborough, New Zealand was dated in 2010 by scientists from New Zealand. According to the essay: "the intraplate basalts in New Zealand that have been erupted intermittently over the last c. 100 Myr" ¹¹¹ Various tables ¹¹² in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 10 billion year range. None of the Lead based dating methods even come vaguely close to a Cretaceous age.

Age Dating Summary						
Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U	
Summaries	Age	Age	Age	Age	Age	
Average	4,876	4,416	59	6,333	3,515	
Maximum	4,945	5,159	85	10,716	5,717	
Minimum	4,836	4,088	15	4,785	2,712	
Difference	109	1,071	70	5,931	3,005	

Table 66

The Petrogenetic Association of Carbonatite

According to the article ¹¹³ this specimen from the Spitskop Complex, South Africa was dated in 1999 by scientists from South Africa. According to the essay: "The 1,341 Ma old Spitskop Complex in South Africa is one of a series of intrusions of alkaline affinity." ¹¹³ Various tables ¹¹⁴ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other.

Age Dating Summary					
Dating	87Rb/86Sr	207Pb/206Pb			
Summary	Age	Age			
Average	-6,012	5,056			
Maximum	2,762	5,126			
Minimum	-66,499	4,649			
Difference	69,262	477			
Table 67					

Nine of the twenty six Rb/Sr dates are over three billion years in error. Seven are over eleven billion years in error. The thirteen Lead 206/207 dates are all totally way off.

Geochemistry Of The Jurassic Oceanic Crust

According to the article ¹¹⁵ this specimen from the Canary Islands was dated in 1998 by scientists from Germany. According to the essay: "An Sm–Nd isochron gives an age of 178 ± 17 Ma, which agrees with the age predicted from paleomagnetic data."¹¹⁵ The article places the age in the late Cretaceous period. Various tables ¹¹⁶ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 350 billion year range! None of the Lead or Rubidium based dating methods even come vaguely close to a Jurassic age.

Age Dating Summary					
Dating	87Rb/86Sr	207Pb/206Pb			
Summary	Age	Age			
Average	-149,488	4,974			
Maximum	51,967	5,024			
Minimum	-299,346	4,845			
Difference	351,313	179			
Table 68					

The Age Of Dar Al Gani 476

According to the article ¹¹⁷ this Martian meteorite was dated in 2003 by scientists from the University of New Mexico, NASA Johnson Space Centre, Lockheed Engineering and Science Company. According to the essay: "In either case, the fact that the Martian meteorites define a whole rock Rb-Sr isochron with an age of 4.5 Ga require these reservoirs to have formed near the time of planet formation." ¹¹⁷ A table ¹¹⁸ in the essay has isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with the assumed age. There is a spread of dates of almost 18 billion year range! None of the Rubidium based dating methods even come vaguely close to the so called true age.

<u>Rb/Sr Age Dating Summary</u>				
Average	-9,398			
Maximum	-2,142			
Minimum	-20,004			
Difference 17,862				
Table 60				

Table 69

Petrogenesis Of The Flood Basalts

According to the article¹¹⁹ this basalt form the Northern Kerguelen Archipelago was dated in 1998 by scientists from the Massachusetts Institute Of Technology, University of Brussels, Belgium and the San Diego State University. According to the essay: "The dominance of this isotopic signature in archipelago lavas for 30 my and its presence in ~40 Ma gabbros is consistent with the previous interpretation that these are isotopic characteristics of the Kerguelen Plume."¹¹⁹ Various tables ¹²⁰ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong

disagreement with each other. There is a spread of dates of over a 44 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary					
Mt Rabouillere	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th
Average	21	5,008	4,903	4,975	6,142
Maximum	30	5,019	5,355	5,100	7,788
Minimum	-7	5,000	4,305	4,793	2,799
Difference	38	20	1,050	307	4,989

<u>Table 70</u>

Age Dating Summary						
Mount Bureau	Age	Age	Age	Age	Age	
Summary	87Rb/86Sr	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th	
Average	27	5,006	5,924	5,161	8,410	
Maximum	30	5,020	23,366	8,496	44,378	
Minimum	24	4,994	3,335	4,454	2,650	
Difference	6	26	20,031	4,042	41,728	
	-		. 71	•	•	

Table 71

Nature Of The Source Regions

According to the article ¹²¹ this lava from southern Tibet was dated in 2004 by scientists from the Open University in Milton Keynes, the University of Bristol and Cardiff University. According to the essay: "Most samples are Miocene in age, ranging from 10 to 25Ma in the south and 19Ma to the present day in northern Tibet" ¹²² Various tables ¹²³ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over a 88 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary						
North Tibet	208Pb/232Th	207Pb/235U	207Pb/206Pb	206Pb/238U		
Summary	Million Years	Million Years	Million Years	Million Years		
	11,420	5,136	4,980	7,783		
87Rb/86Sr	11,350	5,138	4,980	8,023		
Model Age	13,475	5,135	4,987	8,305		
13 Million Years	11,504	5,140	4,989	7,349		
	81,614	7,470	4,987	33,751		
	88,294	7,471	4,991	33,742		
Table 72						

	Age	. Dating Summary		
South Tibet	208Pb/232Th	207Pb/235U	207Pb/206Pb	206Pb/238U
Summary	Million Years	Million Years	Million Years	Million Years
	11,102	313	4,982	6,331
	6,092	946	4,919	5,799
87Rb/86Sr	9,265	266	4,980	6,682
Model Age	4,826	238	4,992	4,086
13 Million Years	8,205	294	4,980	5,567
	25,015	447	4,994	13,328
	33,191	482	4,992	15,053
		TT 11 50		

Age Dating Summary

<u> Table 73</u>

Generation Of Palaeocene Adakitic Andesites

According to the article ¹²⁴ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Palaeocene (c. 55-58Ma) adakitic andesites from the Yanji area." ¹²⁴ Numerous table and charts affirm this as the true age. ¹²⁵ A table ¹²⁶ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 10 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary						
Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U	207Pb/235U	
Summary	Age	Age	Age	Age	Age	
Average	51	5,022	8,941	8,754	5,908	
Maximum	66	5,024	10,518	9,669	6,052	
Minimum	40	5,020	7,800	7,403	5,641	
Difference	26	3	2,718	2,266	411	

Table	74

Evidence For A Widespread Tethyan

According to the article ¹²⁷ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Here, we report age-corrected Nd–Pb–Sr isotope data for 100–350 Ma basalt, diabase, and gabbro from widely separated Tethyan locations in Tibet, Iran, Albania, the eastern Himalayan syntaxis, and the seafloor off NW Australia (Fig. 1)." ¹²⁸ The author concludes that the rocks are from the Cretaceous and Jurassic time periods: "We collected Early Jurassic to Early Cretaceous Neotethyan magmatic rocks in 1998 from outcrops along 1300 km of the Indus–Yarlung suture zone." ¹²⁹ Several tables ¹³⁰ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 60 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary				
Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U
Summary	Age	Age	Age	Age
Average	168	4,999	22,356	7,014
Maximum	1,739	5,236	58,796	15,747
Minimum	0	4,982	10,699	5,042
Difference	1,739	254	48,096	10,705
Table 75				

200P 0/252 Fit, Waximum Ages					
208Pb/232Th	208Pb/232Th	208Pb/232Th	208Pb/232Th		
58,796	29,705	18,607	11,427		
54,206	27,710	18,121	11,377		
48,252	27,422	17,797	11,366		
47,976	26,674	17,787	11,241		
46,117	26,369	17,591	10,718		
42,203	25,972	17,536	10,699		
42,192	25,590	17,054	10,699		
41,604	25,096	16,053	10,300		
41,343	24,010	15,299	9,357		
41,231	22,718	14,340	8,632		
39,637	22,307	13,845	8,486		
38,125	22,228	13,772	8,057		
37,115	21,827	13,652	6,497		
35,012	21,560	13,404	5,573		
33,584	19,910	13,403	5,425		
31,556	19,594	13,006	4,869		
31,286	19,148	12,171			
30,740	18,765	11,540			

200Dh/222Th Marimum Aga

<u>Table 76</u>

206Pb/238U, Maximum Ages

206Pb/238U	206Pb/238U	206Pb/238U	206Pb/238U	206Pb/238U
15,747	11,309	8,770	6,602	5,724
15,067	11,248	8,508	6,589	5,720
14,363	10,360	8,315	6,421	5,601
13,580	9,643	8,314	6,398	5,599
13,204	9,427	8,072	6,369	5,573
12,780	9,300	8,024	6,357	5,515
11,757	9,123	7,604	6,219	5,462
11,659	9,014	7,504	5,863	5,311
11,537	8,996	7,056	5,861	5,286
11,313	8,954	7,002	5,807	5,120
		Table 77		

According to the article ¹³¹ this rock formation from south west Tibet was dated in 1999 by scientists from Austria. According to the essay the true age is: "Volcanic rocks from SW Tibet, with 40Ar/39Ar ages in the range 17–25 Ma." ¹³¹ Numerous table and charts affirm this as the true age. ¹³² Two tables ¹³³ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.

Age Dating Summary					
87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U		
Maximum Age	Age	Age	Age		
25	5,007	99,275	6,944		
25	5,007	95,541	5,560		
25	5,001	71,706	5,013		
25	5,000	70,277	4,715		
25	4,997	68,343	3,745		
25	4,988	67,704	2,646		
Table 78					

Origin Of The Indian Ocean-Type Isotopic Signature

According to the article ¹³⁴ this rock formation the Philippine Sea plate was dated in 1998 by scientists from Department of Geology, Florida International University, Miami. According to the essay the true age is: "Spreading centers in three basins, the West Philippine Basin (37-60 Ma), the Parece Vela Basin (18-31 Ma), and the Shikoku Basin (17-25 Ma) are extinct, and one, the Mariana Trough (0-6 Ma), is active (Figure 1)." ¹³⁴ Numerous table and charts affirm this as the true age. ¹³⁵ Two tables ¹³⁶ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.

Age Dating Summary					
Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	206Pb/238U	208Pb/232Th
Average	42	41	4,960	4,260	8,373
Maximum	55	54	4,989	7,093	13,430
Minimum	19	20	4,921	1,904	3,065
Difference	37	33	68	5,188	10,365
Takla 70					

Table 79

According to the article ¹³⁷ this rock formation Yucca Mountain, Nevada was dated in 2008 by scientists from United States Geological Survey, Geological Survey of Canada, and the Australian National University. According to the essay the true age is unknown. ¹³⁸ Other authors have affirmed the same problem. ¹³⁹ Two tables ¹⁴⁰ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 353 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 350,000 times older than the youngest date.

Age Dating Summary					
Dating	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age	
Average	3,459	4,891	9,984	12	
Maximum	8,126	31,193	352,962	13	
Minimum	-445	1	2	11	
Difference	8,571	31,192	352,960	2	
<u>Table 80</u>					

Another table ¹⁴¹ in the essay has a list of calculated dates As we can see below they are all at radical disagreement with each other. There is a spread of dates of 82 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 82,000 times older than the youngest date.

Age Dating Summary				
Dating	206Pb/238U	207Pb/235U	208Pb/232Th	87Rb/86Sr
Summary	Age	Age	Age	Age
Average	1,540	46	7,687	12
Maximum	20,209	486	82,030	13
Minimum	1	0	3	11
Difference	20,208	486	82,027	2
TE 11 01				

Table	81
Lanc	01

Conclusion

Brent Dalrymple states in his anti creationist book The Age of the Earth:

"Several events in the formation of the Solar System can be dated with considerable precision." 142

Looking at some of the dating it is obvious that precision is much lacking. He then goes on:

"Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ¹⁴³

I his book he gives a table ¹⁴⁴ with radiometric dates of twenty meteorites. If you run the figures through Microsoft Excel, you will find that they are 98.7% in agreement. There is only a seven percent difference between the ratio of the smallest and oldest dates. As we have seen in this essay, such a perfect fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

- 1 <u>http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html</u> The age of 10 to 15 billion years for the age of the Universe.
- 2 <u>http://en.wikipedia.org/wiki/Age_of_the_universe</u>
- 3 <u>http://arxiv.org/pdf/1001.4744v1.pdf</u> Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
- 4 <u>http://en.wikipedia.org/wiki/Age_of_the_Earth</u>
- <u>http://sp.lyellcollection.org/content/190/1/205</u>
 The age of the Earth, G. Brent Dalrymple
 Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
- 6 The age of the earth, Gérard Manhes Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370–382
- 7 <u>http://www.bgc.org/isoplot_etc/isoplot.html</u>
- 8 Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73 [Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].

- 9 Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].
- 10 Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990. Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].
- 11 Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].
- 12 Early Archaean Rocks At Fyfe Hills, Precambrian Research, Volume 21, 1983, Pages 197
- 13 Reference 12, Page 211
- 14 Reference 12, Page 215
- 15 Shock-Melted Antarctic LL-Chondrites, Geochimica et Cosmochimica Acta, 1990, Voume 54, Pages 3509
- 16 Reference 15, Page 3517
- 17 Diamonds And Mantle-Derived Xenoliths, Earth and Planetary Science Letters, Volume 42, 1979, Pages 58
- 18 Reference 17, Page 66
- 19 Reference 17, Page 64
- 20 87Rb-87Sr Isochron Of The Norton County Achondrite, Earth And Planetary Science Letters, Volume 3, 1967, Pages 179
- 21 Reference 20, Page 182
- 22 Base and Precious Metal Veins, Economic Geology, Volume 97, 2002, Pages 23
- 23 Reference 22, Page 27, 28
- 24 Reference 22, Page 29
- 25 Reference 22, Page 34-37
- 26 The Munchberg Massif, Southern Germany, Earth and Planetary Science Letters, Volume 99, 1990, Pages 230
- 27 Rocks of the Central Wyoming Province, Canadian Journal Of Earth Science, 2006, Volume 43, Pages 1419
- 28 Reference 27, Page 1436-1437
- 29 Reference 27, Page 1439
- 30 Basalts From Apollo 15, Earth and Planetary Science Letters, Volume 17, 1973, Pages 324
- 31 Reference 30, Page 334
- 32 Reference 30, Page 332
- 33 History Of The Pasamonte Achondrite, Earth and Planetary Science Letters, Volume 37, 1977, Pages 1
- 34 Reference 33, Pages 3, 9

- 35 Sr Isotopic Composition Of Afar Volcanics, Earth and Planetary Science Letters, Volume 50, 1980, Pages 247
- 36 Reference 35, Page 249
- 37 Reference 35, Page 250, 251
- 38 Orogenic Lherzolite Complexes, Earth and Planetary Science Letters, Volume 51, 1980, Pages 71
- **39** Reference **37**, Page **72**
- 40 Reference 37, Pages 78-80
- 40 Isotopic Geochemistry (O, Sr, Pb), Earth and Planetary Science Letters, Volume 61, 1982, Pages 97
- 41 Reference 40, Pages 101, 102
- 42 Reference 40, Pages 104
- 43 Cretaceous-Tertiary Boundary Sediments, Earth and Planetary Science Letters, Volume 64, 1983, Pages 356
- 44 Reference 43, Pages 361
- 45 Correlated N D, Sr And Pb Isotope Variation, Earth and Planetary Science Letters, Volume 59, 1982, Pages 327
- 46 Reference 45, Pages 330, 331
- 47 A Depleted Mantle Source For Kimberlites, Earth and Planetary Science Letters, Volume 73, 1985, Pages 269
- 48 Reference 47, Pages 270
- 49 Reference 47, Pages 271, 273
- 50 Sm-Nd Isotopic Systematics, Earth and Planetary Science Letters, Volume 71, 1984, Pages 46
- 51 Reference 50, Pages 49
- 52 Strontium, Neodymium And Lead Compositions, Earth and Planetary Science Letters, Volume 75, 1985, Pages 354-368
- 53 Reference 52, Pages 356, 363
- 54 Trace Element And Sr And Nd Isotope, Earth and Planetary Science Letters, Volume 80, 1986, Pages 281-298
- 55 Reference 54, Pages 287
- 56 Reference 54, Pages 289
- 57 The southeast Australian Lithosphere Mantle, Earth and Planetary Science Letters, Volume 86, 1987, Pages 327
- 58 Reference 57, Pages 332
- 59 Reference 57, Pages 330, 332
- www.creation.com

- 60 Strontium, neodymium and lead isotopic, Earth and Planetary Science Letters, Volume 90, 1988, Pages 26-40
- 61 Reference 60, Pages 35
- 62 Reference 60, Pages 31
- 63 Sr, Nd, and Os isotope geochemistry, Earth and Planetary Science Letters, Volume 99, 1990, Pages 362
- 64 Reference 63, Pages 364
- 65 Reference 63, Pages 365, 368
- 66 Pb, Nd and Sr isotopic geochemistry, Earth and Planetary Science Letters, Volume 105, 1991, Pages 149
- 67 Reference 66, Pages 154, 160
- 67 Reference 66, Pages 156, 157
- 68 Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113, 1992, Pages 107
- 69 Reference 68, Pages 110
- 70 Production of Jurassic Rhyolite, Earth and Planetary Science Letters, Volume 134, 1995, Pages 23-36
- 71 Reference 70, Pages 25
- 72 Evolution of Reunion Hotspot Mantle, Earth and Planetary Science Letters, Volume 134, 1995, Pages 169-185
- 73 Reference 72, Pages 173
- 73 Reference 72, Pages 174
- 74 Reference 72, Pages 180
- 75 An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702
- 76 Reference 75, Pages 4690, 4691
- 77 The 72 Ma Geochemical Evolution, Earth and Planetary Science Letters, Volume 183, 2000, Pages 73
- 78 Reference 77, Pages 76-79
- 79 The Himalayan collision zone, Earth and Planetary Science Letters, Volume 244, 2006, Pages 234
- 80 Reference 79, Pages 234, 235
- 81 Reference 79, Pages 238
- 82 Reference 79, Pages 242
- 83 Evidence for a Non Magmatic Component, Geochimica et Cosmochimica Acta, 2001, Volume 65, Number 4, Pages 571

- 84 Reference 83, Pages 581
- 85 Reference 83, Pages 576, 577
- 86 The Origin of Geochemical Diversity, Geochimica et Cosmochimica Acta, Volume 71, 2007, Pages 3656
- 87 Reference 86, Pages 3661
- 88 Reference 86, Pages 3660
- 89 Mechanisms for Incompatible-Element Enrichment, Geochimica et Cosmochimica Acta, Volume 73, 2009, Pages 3963
- 90 Reference 89, Pages 3967
- 91 Constraints on Martian Differentiation Processes, Geochimica et Cosmochimica Acta, 1997, Volume 61, Number 22, Pages 4915
- 92 Reference 91, Pages 4918, 4924
- 93 Geochemistry of the Volcan de l'Androy, Journal Of Petrology, 2008, Volume 49, Number 6, Pages 1069
- 94 Reference 93, Pages 1078
- 95 Continental Lithospheric Contribution, Journal Of Petrology, 1997, Volume 38, Number 1, Pages 115
- 96 Reference 95, Pages 119
- 97 Reference 95, Pages 124
- 98 Garnet Granulite Xenoliths, Journal Of Petrology, 2001, Volume 42, Number 4, Pages 731
- 99 Reference 98, Pages 742, 743
- 100 Reference 98, Pages 737-740
- 101 http://petrology.oxfordjournals.org/content/suppl/2001/04/27/42.4.731.DC1/ege033SUPPLEM.csv
- 102 The Isotope and Trace Element Budget, Journal Of Petrology, 2000, Volume 41, Number 6, Pages 759
- 103 Reference 102, Pages 772-774
- 104 Fluid Flow and Diffusion, Journal Of Petrology, 1997, Volume 38, Number 11, Pages 1489
- 105 Reference 104, Pages 1497
- 106 Reference 104, Pages 1498
- 107 Reference 104, Pages 1492-1495
- 108 Temporal Evolution of the Lithospheric Mantle, Journal Of Petrology, 2009, Volume 50, Number 10, Pages 1857
- 109 Reference 108, Pages 1873, 1874, 1877, 1879, 1880
- 110 Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51, Number 10, Pages 2003-2045

- 111 Reference 110, Pages 2038
- 112 Reference 110, Pages 2024-2026
- 113 The Petrogenetic Association of Carbonatite, Journal Of Petrology, 1999, Volume 40, Number 4, Pages 525
- 114 Reference 113, Pages 534, 535
- 115 Geochemistry of Jurassic Oceanic Crust, Journal Of Petrology, 1998, Volume 39, Number 5, Pages 859–880
- 116 Reference 115, Pages 867, 868
- 117 The age of Dar al Gani 476, Geochimica Et Cosmochimica Acta, 2003, Volume 67, Number 18, Pages 3519–3536
- 118 Reference 117, Pages 3523
- 119 Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711–748
- 120 Reference 119, Pages 729, 730
- 121 Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 555
- 122 Reference 121, Pages 556
- 123 Reference 121, Pages 566, 575, 576
- 124 Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 661
- 125 Reference 124, Pages 676-678
- 126 Reference 124, Pages 684
- 127 Evidence for a Widespread Tethyan, Journal Of Petrology, 2005, Volume 46, Number 4, Pages 829-858
- 128 Reference 127, Pages 831
- 129 Reference 127, Pages 840
- 130 Reference 127, Pages 832-837
- 131 Post-Collisional Potassic and Ultrapotassic , Journal Of Petrology, 1999, Volume 40, Number 9, Pages 1399-1424
- 132 Reference 131, Pages 1403, 1405, 1406
- 133 Reference 131, Pages 1414, 1415
- 134 Origin of the Indian Ocean-type isotopic signature, Journal Of Geophysical Research, 1998, Volume 103, Number B9, Pages 20,963
- 135 Reference 134, Pages 20965, 20969

- 136 Reference 134, Pages 20968, 20969
- 137 U–Th–Pb Dating Of Secondary Minerals, Geochimica et Cosmochimica Acta, 2008, Volume 72, Pages 2067
- 138 Reference 137, Pages 2067, 2068
- 139 Reference 137, Pages 2072-2073, 2074
- 140 Reference 137, Pages 2080, 2081
- 142 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.
- 143 Reference 142, Page 23
- 144 Reference 142, Page 287

www.creation.com