The Rubidium-Strontium Dating Method

By Paul Nethercott October 2012

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." 4 "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

If we run the isotopic ratios give in standard geology magazines through the computer program Isoplot ${ }^{7}$ we find that the Uranium/Thorium/Lead isotopic ratios in the rocks disagree radically with the Rubidium $/ \mathrm{Strontium}$ ages. $\mathrm{The} \mathrm{U} / \mathrm{Th} / \mathrm{Pb}$ ratios give ages older than the evolutionist age of the Earth, Solar System, Galaxy and Universe. How can Earth rocks be dated as being older than the Big Bang?

If we use isotopic formulas ${ }^{8-11}$ given in standard geology text we can arrive at ages from the $\mathrm{Rb} / \mathrm{Sr}$ and $\mathrm{Nd} / \mathrm{Sm}$ ratios. The formula for $\mathrm{Rb} / \mathrm{Sr}$ age is given as:
$t=\frac{2.303}{\lambda} \log \left(\frac{(87 S r / 86 S r)-(87 S r / 86 S r)_{0}}{(87 R b / 86 S r)}+1\right)$

Where t equals the age in years. λ equals the decay constant. $(87 \mathrm{Sr} / 86 \mathrm{Sr})=$ the current isotopic ratio. $(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=$ the initial isotopic ratio. $(87 \mathrm{Rb} / 86 \mathrm{Sr})=$ the current isotopic ratio. The same is true for the formula below.
$t=\frac{2.303}{\lambda} \log \left(\frac{(143 N d / 144 N d)-(143 N d / 144 N d)_{0}}{(147 S m / 144 N d)}+1\right)$

Here are examples of isotopic ratios taken from several articles in major geology magazines which give absolutely absurd dates.

Early Archaean Rocks At Fyfe Hills

These early Archaean rocks from Fyfe Hills in Antarctica were dated in 1982 by scientists form the Australian Bureau of Mineral Resources, The University of Adelaide, Adelaide, and the University of Tasmania, Hobart. ${ }^{12}$ Several isotopic samples ${ }^{13}$ gave negative ages [-24 billion, -14 billion, -108 billion, -43 billion]. How can a rock that exists in the present and formed in the past have formed 108 billion years in the future?

87Rb/86Sr, Ages Dating Summary
Average
Maximum
Minimum
Difference

Table 1
The Uranium/Lead ratios ${ }^{14}$ give uniform values of 2,500 million years old. The thirty $87 \mathrm{Rb} / 86 \mathrm{Sr}$ ratios have nineteen that give ages much older [3,039 to 4,925 Million years] and seven [1,835 to -108,362 Million years] much younger. The author's choice of age is purely arbitrary.

Shock-Melted Antarctic LL-Chondrites

These meteorite samples were dated in 1990 by scientists from the Department of Earth Sciences, Kohe University, Japan. ${ }^{15}$ According to the article ${ }^{16}$ the meteorite is 4.55 billion years old. The article claims that the maximum range of model ages is 3.11 to 7.33 billion years. ${ }^{17}$ If we run the isotopic ratios through Microsoft Excel we get ages from 4 to 21 billion years old. Thirty six dates are over 5 billion years. Nine are over 10 billion years. If the Solar System is less than 5 billion years old how can the meteorite be older than the assumed age of the galaxy [10 billion years]?

87Rb/86Sr, Maximum Ages		
Age	Age	Age
Million Years	Million Years	Million Years
21,611	$\mathbf{9 , 0 1 5}$	$\mathbf{6 , 7 5 6}$
14,466	$\mathbf{8 , 9 8 8}$	$\mathbf{6 , 5 5 6}$
12,968	$\mathbf{8 , 9 2 1}$	$\mathbf{6 , 1 9 2}$
12,354	$\mathbf{8 , 8 6 9}$	$\mathbf{6 , 1 5 7}$
11,946	$\mathbf{8 , 7 5 3}$	$\mathbf{5 , 9 8 1}$
10,868	$\mathbf{8 , 6 7 5}$	$\mathbf{5 , 6 7 7}$
10,727	$\mathbf{8 , 5 5 6}$	$\mathbf{5 , 4 9 1}$
10,623	$\mathbf{8 , 4 0 5}$	$\mathbf{5 , 4 8 3}$
10,162	$\mathbf{8 , 1 5 3}$	$\mathbf{5 , 4 5 8}$
9,888	$\mathbf{7 , 5 9 0}$	$\mathbf{5 , 4 5 3}$
9,237	$\mathbf{6 , 9 4 7}$	$\mathbf{5 , 3 8 8}$
9,161	$\mathbf{6 , 8 9 9}$	$\mathbf{5 , 3 1 9}$

87Rb/86Sr, Ages Dating Summary

Average	$\mathbf{8 , 5 8 5}$
Maximum	$\mathbf{2 1 , 6 1 1}$
Minimum	$\mathbf{3 , 9 6 9}$
Difference	$\mathbf{1 7 , 6 4 2}$

Table 3

Diamonds And Mantle-Derived Xenoliths

These samples from South African diamond mines were dated in 1979 by scientist from the University of the Witwatersrand, Johannesburg, South Africa. According to the isochron diagrams ${ }^{17}$ the age of the sample is 2.4 billion years. If we run the Lead isotope ratios ${ }^{18}$ through Isoplot we get the following values:

Lead Isotope Ages

Lead	
Average	$\mathbf{4 , 9 9 5}$
Maximum	$\mathbf{5 , 2 4 9}$
Minimum	$\mathbf{4 , 8 8 5}$
Std Deviation	$\mathbf{1 2 2}$

Table 4
If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{18}$ through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary	
Average	$\mathbf{2 8 , 4 2 9}$
Maximum	$\mathbf{9 1 , 9 5 7}$
Minimum	$\mathbf{3 , 2 5 7}$
Difference	$\mathbf{8 8 , 7 0 0}$

Table 5
There is almost a 90 billion years difference between the oldest and youngest dates. Below we can see some of the maximum ages and how stupid they are.
$\underline{\text { 87Rb/86Sr, Maximum Ages }}$

Age	Age
Million Years	Million Years
91,957	18,139
53,584	17,036
51,582	15,716
43,201	15,340
33,542	13,633
24,366	12,202

Table 6

87Rb/87Sr Isochron Of The Norton County Achondrite

This meteorite dating was done in 1967 by scientist ${ }^{20}$ from the California Institute of Technology. In this article we will find that dating done 45 years later [2008] is giving just as absurd results. According to the Argon dating results ${ }^{21}$ the meteorite is between 2.3 and 5.1 billion years old. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{22}$ through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary

Average	$\mathbf{1 , 3 7 5}$
Maximum	$\mathbf{4 , 8 7 1}$
Minimum	$\mathbf{- 1 6 , 2 7 7}$
Difference	$\mathbf{2 1 , 1 4 9}$

Table 7

Base and Precious Metal Veins

According to the article the dating [Coeur D'Alene Mining District, Idaho] was done in 2002 by scientists from the U.S. Geological Survey, California, the Department of Earth and Planetary Sciences, Washington University, Saint Louis, Missouri, the Lawrence Livermore National Laboratory, Livermore, California and the Sunshine Precious Metals Company, Idaho. ${ }^{22}$ If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{23}$ from Table 1 in the article through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary

Average	128,708
Maximum	508,074
Minimum	$\mathbf{7 , 9 9 0}$
Difference	$\mathbf{5 1 6 , 0 6 4}$
Table 8	

There is a 500 billion year difference between the youngest and oldest dates. The average age is over 120 billion years. Below we can see some of the maximum ages and how stupid they are.

87Rb/86Sr, Maximum Ages

Age	Age	Age	Age
Million Years	Million Years	Million Years	Million Years
508,074	157,304	125,399	$\mathbf{8 6 , 4 8 3}$
314,336	151,142	114,796	$\mathbf{7 5 , 6 8 4}$
302,580	150,089	114,795	$\mathbf{7 2 , 9 1 5}$
287,077	149,802	113,950	$\mathbf{7 1 , 2 2 5}$
207,257	144,826	111,884	$\mathbf{6 9 , 7 2 9}$
201,185	142,977	110,719	$\mathbf{6 3 , 9 3 4}$
191,104	138,115	109,164	$\mathbf{6 3 , 4 0 6}$
190,573	134,866	108,617	$\mathbf{6 1 , 7 4 0}$
189,167	134,061	108,278	$\mathbf{5 6 , 7 3 5}$
186,066	134,039	102,140	$\mathbf{5 2 , 1 1 7}$
183,607	132,885	99,952	47,926
183,225	132,746	$\mathbf{9 3 , 8 4 8}$	46,968
163,764	131,670	$\mathbf{8 9 , 2 4 6}$	$\mathbf{3 9 , 9 4 4}$
158,436	130,664	$\mathbf{8 8 , 6 2 6}$	$\mathbf{3 7 , 6 2 3}$
158,282	129,495	$\mathbf{8 7 , 7 0 8}$	16,153

Table 9
If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{24}$ from Table 2 in the article through Microsoft Excel we get the following values:
87Rb/86Sr, Ages Dating Summary

Average	139,471
Maximum	508,074
Minimum	12,314
Difference	520,388

Table 10
There is a 520 billion year difference between the youngest and oldest dates. The average age is almost 140 billion years. Below we can see some of the maximum ages and how stupid they are. The oldest dates is over half a trillion years old.

87Rb/86Sr, Maximum Ages		
Age	Age	Age
Million Years	Million Years	Million Years
508,074	147,429	87,708
314,336	$\mathbf{1 3 8 , 8 8 2}$	$\mathbf{8 4 , 7 1 6}$
165,542	118,679	$\mathbf{8 2 , 2 9 4}$
157,714	98,450	$\mathbf{5 9 , 0 8 0}$
157,589	$\mathbf{9 1 , 4 5 0}$	45,663
151,317	$\mathbf{8 9 , 2 3 6}$	$\mathbf{1 2 , 3 1 4}$
Table 11		

If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{\mathbf{2 5}}$ from Table 4 in the article through Microsoft Excel we get the following values:

87Rb/86Sr, Ages Dating Summary

Average	$\mathbf{8 8 , 5 7 1}$
Maximum	$\mathbf{2 8 8 , 7 7 5}$
Minimum	$\mathbf{- 1 7 0 , 2 3 2}$
Difference	$\mathbf{4 5 9 , 0 0 7}$

Table 12
There is a 560 billion year difference between the youngest and oldest dates. The average age is almost 90 billion years. Below we can see some of the maximum ages and how stupid they are. The oldest date is almost 300 billion years old. The youngest is negative 170 billion years old.

87Rb/86Sr, Maximum Ages

Age	Age	Age	Age	Age	Age
Million Years					
$\mathbf{2 8 8 , 7 7 5}$	$\mathbf{9 7 , 2 4 2}$	$\mathbf{9 4 , 8 1 9}$	$\mathbf{9 3 , 0 7 9}$	$\mathbf{9 0 , 8 9 1}$	$\mathbf{8 5 , 9 2 4}$
$\mathbf{1 0 2 , 7 1 6}$	$\mathbf{9 7 , 1 1 7}$	$\mathbf{9 4 , 4 6 5}$	$\mathbf{9 2 , 9 9 5}$	$\mathbf{9 0 , 7 0 0}$	$\mathbf{8 5 , 8 0 5}$
101,380	$\mathbf{9 7 , 0 3 3}$	$\mathbf{9 4 , 4 5 3}$	$\mathbf{9 2 , 9 7 2}$	$\mathbf{9 0 , 5 3 6}$	$\mathbf{8 5 , 2 6 3}$
100,277	$\mathbf{9 6 , 7 9 2}$	$\mathbf{9 4 , 4 3 1}$	$\mathbf{9 2 , 9 6 7}$	$\mathbf{9 0 , 3 6 7}$	$\mathbf{8 4 , 9 9 0}$
99,779	$\mathbf{9 6 , 6 8 7}$	$\mathbf{9 4 , 4 0 8}$	$\mathbf{9 2 , 9 6 3}$	$\mathbf{9 0 , 1 2 7}$	$\mathbf{8 3 , 9 1 4}$
$\mathbf{9 9 , 6 8 3}$	$\mathbf{9 6 , 6 5 5}$	$\mathbf{9 4 , 3 9 7}$	$\mathbf{9 2 , 9 1 5}$	$\mathbf{9 0 , 0 8 9}$	$\mathbf{8 3 , 5 8 4}$
$\mathbf{9 9 , 3 6 9}$	$\mathbf{9 6 , 6 0 2}$	$\mathbf{9 4 , 3 4 5}$	$\mathbf{9 2 , 8 7 8}$	$\mathbf{9 0 , 0 1 8}$	$\mathbf{8 2 , 6 3 9}$
$\mathbf{9 9 , 2 3 8}$	$\mathbf{9 6 , 2 9 3}$	$\mathbf{9 4 , 3 3 9}$	$\mathbf{9 2 , 8 6 3}$	$\mathbf{8 9 , 8 3 8}$	$\mathbf{8 0 , 9 6 2}$
$\mathbf{9 9 , 1 7 7}$	$\mathbf{9 6 , 2 5 2}$	$\mathbf{9 4 , 2 4 9}$	$\mathbf{9 2 , 8 2 9}$	$\mathbf{8 9 , 7 3 6}$	$\mathbf{8 0 , 2 1 4}$
$\mathbf{9 8 , 9 4 8}$	$\mathbf{9 6 , 2 3 6}$	$\mathbf{9 4 , 2 3 5}$	$\mathbf{9 2 , 6 3 4}$	$\mathbf{8 9 , 4 6 6}$	$\mathbf{7 9 , 0 8 2}$
$\mathbf{9 8 , 7 6 5}$	$\mathbf{9 6 , 0 4 3}$	$\mathbf{9 4 , 1 3 9}$	$\mathbf{9 2 , 6 3 0}$	$\mathbf{8 9 , 2 3 6}$	$\mathbf{7 8 , 0 5 3}$
$\mathbf{9 8 , 7 3 6}$	$\mathbf{9 5 , 9 8 1}$	$\mathbf{9 4 , 1 0 0}$	$\mathbf{9 2 , 3 7 4}$	$\mathbf{8 9 , 1 7 1}$	$\mathbf{7 6 , 7 5 0}$
$\mathbf{9 8 , 6 8 5}$	$\mathbf{9 5 , 8 9 4}$	$\mathbf{9 3 , 9 2 8}$	$\mathbf{9 2 , 3 1 5}$	$\mathbf{8 8 , 9 3 2}$	$\mathbf{7 6 , 2 5 6}$
$\mathbf{9 8 , 5 9 1}$	$\mathbf{9 5 , 7 6 1}$	$\mathbf{9 3 , 8 4 1}$	$\mathbf{9 2 , 3 0 9}$	$\mathbf{8 8 , 8 7 6}$	$\mathbf{7 6 , 1 7 8}$
$\mathbf{9 8 , 4 3 6}$	$\mathbf{9 5 , 7 1 1}$	$\mathbf{9 3 , 7 6 6}$	$\mathbf{9 2 , 2 0 5}$	$\mathbf{8 8 , 5 4 0}$	$\mathbf{7 5 , 0 4 8}$
$\mathbf{9 8 , 2 8 5}$	$\mathbf{9 5 , 6 0 9}$	$\mathbf{9 3 , 7 3 0}$	$\mathbf{9 2 , 1 4 0}$	$\mathbf{8 8 , 2 9 5}$	$\mathbf{7 2 , 0 0 4}$
$\mathbf{9 8 , 2 4 3}$	$\mathbf{9 5 , 5 2 2}$	$\mathbf{9 3 , 5 8 2}$	$\mathbf{9 2 , 1 0 8}$	$\mathbf{8 7 , 5 8 5}$	$\mathbf{7 0 , 4 7 9}$
$\mathbf{9 7 , 9 7 9}$	$\mathbf{9 5 , 5 1 0}$	$\mathbf{9 3 , 5 7 4}$	$\mathbf{9 1 , 9 0 6}$	$\mathbf{8 7 , 3 5 9}$	$\mathbf{6 9 , 7 9 0}$
$\mathbf{9 7 , 8 3 0}$	$\mathbf{9 5 , 3 8 8}$	$\mathbf{9 3 , 5 0 4}$	$\mathbf{9 1 , 6 7 4}$	$\mathbf{8 7 , 2 6 0}$	$\mathbf{5 5 , 1 5 7}$
$\mathbf{9 7 , 6 2 8}$	$\mathbf{9 5 , 2 1 8}$	$\mathbf{9 3 , 4 0 1}$	$\mathbf{9 1 , 6 5 0}$	$\mathbf{8 6 , 8 2 6}$	$\mathbf{5 3 , 5 6 8}$
$\mathbf{9 7 , 6 0 4}$	$\mathbf{9 5 , 1 9 7}$	$\mathbf{9 3 , 3 9 4}$	$\mathbf{9 1 , 4 3 5}$	$\mathbf{8 6 , 6 9 1}$	$\mathbf{5 1 , 9 3 4}$
$\mathbf{9 7 , 5 4 5}$	$\mathbf{9 5 , 1 8 5}$	$\mathbf{9 3 , 2 7 1}$	$\mathbf{9 1 , 2 3 8}$	$\mathbf{8 6 , 4 7 4}$	$\mathbf{- 3 9 , 2 0 7}$
$\mathbf{9 7 , 4 2 1}$	$\mathbf{9 5 , 1 2 5}$	$\mathbf{9 3 , 1 9 9}$	$\mathbf{9 1 , 1 8 9}$	$\mathbf{8 6 , 1 3 6}$	$\mathbf{- 8 9 , 6 5 6}$
$\mathbf{9 7 , 4 0 2}$	$\mathbf{9 4 , 9 9 4}$	$\mathbf{9 3 , 1 2 4}$	$\mathbf{9 1 , 0 0 5}$	$\mathbf{8 6 , 0 5 0}$	$\mathbf{\mathbf { 1 7 0 , 2 3 2 }}$

Table 13

The Munchberg Massif, Southern Germany

According the article, this dating was done in 1990 by scientists from the Koln University, Germany and the Scripps Institution of Oceanography, La Jolla, California. ${ }^{26}$ There is an 8 billion year difference between the youngest and oldest dates.

87 $\mathbf{R b}$ /86Sr, Ages Dating Summary	
Average	$\mathbf{1 , 1 0 5}$
Maximum	$\mathbf{7 , 8 3 4}$
Minimum	$\mathbf{- 2 9 6}$
Difference	$\mathbf{8 , 1 3 0}$

Table 14

Rocks of the Central Wyoming Province

These rock samples were dated in 2005 by scientists from the University of Wyoming. ${ }^{27}$ If we run the Rubidium/Strontium and Neodymium/Samarium isotope ratios ${ }^{28}$ from the article through Microsoft Excel we get the following values:

Ages Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{1 4 7 S m} / \mathbf{1 4 4 N d}$	$\mathbf{2 0 7 P b} / 206 \mathrm{~Pb}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$
Average	2,863	$\mathbf{2 , 8 6 9}$	$\mathbf{5 , 1 2 3}$	$\mathbf{1 7 , 8 9 9}$	$\mathbf{1 1 , 9 0 6}$
Maximum	2,952	2,954	$\mathbf{5 , 2 9 4}$	$\mathbf{3 8 , 7 4 6}$	$\mathbf{1 8 , 9 8 5}$
Minimum	$\mathbf{2 , 6 3 0}$	$\mathbf{2 , 6 3 1}$	$\mathbf{4 , 6 6 2}$	$\mathbf{6 , 6 5 0}$	$\mathbf{7 , 2 9 4}$
Std Deviation	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{1 5 2}$	$\mathbf{9 , 7 5 4}$	$\mathbf{3 , 2 9 8}$

Table 15

The Uranium/Lead dates ${ }^{29}$ are up to sixteen billion years older than the Rubidium/Strontium and Neodymium/Samarium dates. The Thorium/Lead dates are up to thirty six billion years older. The so called true age is just a guess.

Basalts From Apollo 15

According the article, this Moon rock dating was done in 1972 by scientists from the California Institute of Technology, Pasadena, California. ${ }^{30}$ According to the essay the rock is 3.4 billion years old. 31 If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{32}$ from Table 4 in the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary

Average	3,045
Maximum	$\mathbf{2 7 , 2 1 1}$
Minimum	$\mathbf{- 3 , 8 0 8}$
Difference	$\mathbf{3 1 , 0 1 9}$

Table 16
Of the 21 isotopic ratios, seven were below 500 million years old. Two were over six billion years old.

History Of The Pasamonte Achondrite

According to the article this meteorite specimen was dated in 1977 by scientists from the United States Geological Survey, Colorado and the Department of Chemistry and Geochemistry, Colorado School of Mines. ${ }^{33}$ The article states that Rubidium/Strontium dating affirms that this material is 4.5 billion years old. ${ }^{34}$ If we run the various isotope ratios ${ }^{34}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

U/Th/Pb Age Dating Summary				
Summary	206Pb/238U	207Pb/235U	207Pb/206Pb	208Pb/232Th
Average	$\mathbf{3 , 0 8 8}$	$\mathbf{3 , 6 6 6}$	$\mathbf{4 , 5 6 6}$	$\mathbf{2 , 2 6 3}$
Maximum	5,694	5,032	4,963	$\mathbf{1 4 , 8 0 0}$
Minimum	103	865	4,440	$\mathbf{- 1 0 , 7 0 0}$
Difference	5,591	4,167	523	$\mathbf{2 5 , 5 0 0}$
Table 17				

If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{34}$ from the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary

Average	
Maximum	$\mathbf{4 , 4 0 3}$
Minimum	$\mathbf{2 , 4 1 2}$
Difference	$\mathbf{4 , 2 6 2}$

Table 18
The Thorium/Lead dates are up to twelve billion years older. The so called true age is just a guess.

Sr Isotopic Composition Of Afar Volcanics

According to the article ${ }^{35}$ this specimen [basalts from the Afar depression in Ethiopia] was dated in 1977 by scientists from Italy and France. The article states that the formation is of the late Quaternary period and thus very young. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{36}$ from the article through Microsoft Excel we get the following values:

Rb/Sr Age Dating Summary	
Average	$\mathbf{1 8 3}$
Maximum	$\mathbf{2 , 2 6 0}$
Minimum	$\mathbf{- 1 0 8}$
Difference	$\mathbf{2 , 3 6 8}$

Table 19
As far as the rocks being of a Quaternary age, the dates just don't line up.

Orogenic Lherzolite Complexes

According to the article ${ }^{37}$ this specimen from Gibraltar was dated in 1979 by scientists from France. According to the article ${ }^{38}$ the maximum age of the samples is 103 million years. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{39}$ from the two different tables in the article [Tables 2 and 3] through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary		
Summary	Table 2	Table 3
Average	$-52,203$	$-29,099$
Maximum	$-2,229$	$-1,258$
Minimum	$-\mathbf{- 1 3 5 , 1 4 0}$	$-102,498$
Difference	132,911	101,240
Table 20		

The dates are light years different from what the essay claims. They are just absurd.

Isotopic Geochemistry ($\mathbf{O s}, \mathbf{S r}, \mathbf{P b}$)

According to the article ${ }^{40}$ this specimen [the Golda Zuelva and Mboutou anorogenic complexes, North Cameroun] was dated in 1982 by scientists from France. According to the article ${ }^{40}$ the maximum age of the sample is 66 million years. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{41}$ from the two different tables in the article [Tables 1and 2] through Microsoft Excel we get the following values respectively:

Age Dating Summary

	Age Dating Summary			
Dating	87Rb/86Sr	87Rb/86Sr	Pb207/Pb206	
Summary	Age	Age	Age	
Average	321	57	4,982	
Maximum	1,635	141	5,080	
Minimum	52	0	4,932	
Difference	1,687	141	10,012	
Table 21				

If we run the $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ isotope ratios ${ }^{42}$ from the article [Table 3] through Microsoft Excel we get the following values respectively:

Lead Isotope Ages	
Age	Age
$\mathbf{5 , 0 8 0}$	$\mathbf{4 , 9 6 4}$
$\mathbf{5 , 0 4 8}$	$\mathbf{4 , 9 5 8}$
4,990	4,957
4,984	4,938
4,980	4,932
4,975	
Table 22	

The so called true age is just a guess.

Cretaceous-Tertiary Boundary Sediments

According to the article ${ }^{43}$ this specimen [from the Barranco del Gredero, Caravaca, Spain] was dated in 1983 by scientists from University of California, Los Angeles, the United States Geological Survey, and the Geological Institute, University of Amsterdam. According to the article ${ }^{44}$ the maximum age of the sample is 65 million years. If we run the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ isotope ratios ${ }^{44}$ from the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary	
Average	$\mathbf{7 4 0}$
Maximum	$\mathbf{5 , 1 5 7}$
Minimum	$\mathbf{- 2 6 6}$
Difference	5,423
Table 23	

Out of the 16 dates derived from isotopic ratios, ten were over 100 million years old. Two were over 4 billion years old. One was negative 266 million years old. How can a rock that formed in the past have a negative age! The choice of 65 million years is just a guess.

Correlated N D, Sr And Pb Isotope Variation

According to the article ${ }^{\overline{45}}$ this specimen [Walvis Ridge, Walvis Bay] was dated in 1982 by scientists from the Massachusetts Institute of Technology, and the Department of Geochemistry, University of Cape Town, South Africa. According to the article ${ }^{45}$ the age of the sample is 70 million years. If we run the various isotope ratios ${ }^{46}$ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary

Summary	Pb207/Pb206	147Sm/144Nd	87Rb/86Sr
Average	5,033	70	$\mathbf{6 4}$
Maximum	5,061	70	93
Minimum	5,004	69	0
Difference	57	140	93

A Depleted Mantle Source For Kimberlites

According to the article ${ }^{47}$ this specimen [kimberlites from Zaire] was dated in 1984 by scientists from Belgium. According to the article ${ }^{48}$ the age of the samples is 70 million years. If we run the various isotope ratios ${ }^{49}$ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary

Age Dating Summary				
Summary	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{8 7 R b} / 86 \mathrm{Sr}$	$\mathbf{1 4 7 S m} / \mathbf{1 4 4 N d}$
Average	4,977	4,810	86	$\mathbf{7 2}$
Maximum	$\mathbf{5 , 0 1 7}$	$\mathbf{1 0 , 8 7 0}$	$\mathbf{1 4 6}$	$\mathbf{8 0}$
Minimum	4,909	$\mathbf{1 , 3 9 1}$	$\mathbf{5 0}$	$\mathbf{6 3}$
Difference	$\mathbf{1 0 8}$	$\mathbf{9 , 4 7 8}$	$\mathbf{1 9 6}$	$\mathbf{1 7}$

Table 25

The $207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ maximum age is 34 times older than the $87 \mathrm{Rb} / 86 \mathrm{Sr}$ maximum age. The $206 \mathrm{~Pb} / 238 \mathrm{U}$ maximum age is 74 times older than the $147 \mathrm{Sm} / 144 \mathrm{Nd}$ maximum age. There is a 10.8 billion year difference between the oldest and youngest age attained.

Sm-Nd Isotopic Systematics

According to the article ${ }^{\mathbf{5 0}}$ this specimen [Enderby Land, East Antarctic] was dated in 1984 by scientists from the Australian National University, Canberra, and the Bureau of Mineral Resources, Canberra. According to the article ${ }^{50}$ the age of the sample is 3,000 million years. If we run the $\mathrm{Rb} / \mathrm{Sr}$ isotope ratios ${ }^{51}$ from the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary

Average	$-\mathbf{8 7 3}$
Maximum	$\mathbf{3 , 4 8 4}$
Minimum	$-\mathbf{- 2 5 , 1 2 1}$
Difference	$\mathbf{2 8 , 6 0 5}$

Table 26
There is almost a 30 billion year difference between the oldest and youngest dates.

Strontium, Neodymium And Lead Compositions

According to the article ${ }^{52}$ this specimen [Snake River Plain, Idaho] was dated in 1985 by scientists from the Geology Department, Rice University, Houston, Texas, the Earth Sciences Department, Open University, England and the Geology Department, Ricks College, Idaho. According to the article ${ }^{52}$ the age of the sample is 3.4 billion years. If we run the various isotope ratios ${ }^{53}$ from the article through Microsoft Excel we get the following values respectively:

Age Dating Summary

Summary	Pb207/Pb206	Pb207/Pb206	87Rb/86Sr
Average	$\mathbf{5 , 1 4 3}$	$\mathbf{5 , 1 3 8}$	$\mathbf{4 0 , 0 5 2}$
Maximum	$\mathbf{5 , 3 6 2}$	$\mathbf{5 , 3 1 4}$	$\mathbf{2 0 5 , 0 9 3}$
Minimum	4,698	4,940	1,443
Difference	664	374	$\mathbf{4}$ 203,650
Table 27			

The Lead isotope ratios from two different tables give dates 200 billion years younger than the $\mathrm{Rb} / \mathrm{Sr}$ isotope ratios. The Average age of the $\mathrm{Rb} / \mathrm{Sr}$ isotope ratios is 40 billion years. Below we can see some of the maximum ages and how stupid they are.
$\underline{\text { 87Rb/86Sr, Maximum Ages }}$

Age	Age
Million Years	Million Years
205,093	11,974
189,521	11,908
188,777	9,960
95,450	9,101
52,643	$\mathbf{7 , 1 2 4}$
13,119	$\mathbf{6 , 0 2 2}$
12,220	5,089
Table 28	

Trace Element And Sr And Nd Isotope

According to the article ${ }^{54}$ this specimen [West Germany] was dated in 1986 by scientists from Germany and California. According to the article ${ }^{54}$ the age of the samples is 2 billion years. If we run the various isotope ratios ${ }^{55}$ from the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary	
Average	$\mathbf{4 1 , 5 7 3}$
Maximum	$\mathbf{1 7 5 , 2 8 9}$
Minimum	$\mathbf{- 3 0 , 7 3 4}$
Difference	$\mathbf{2 0 6 , 0 2 2}$

Table 29
Many of the $\mathrm{Rb} / \mathrm{Sr}$ isotopic ratios would not produce proper ages. Those that did gave absurd values. Below are some dates taken from another table ${ }^{56}$ in the original article.
$\underline{\mathrm{Rb} / \mathbf{S r} \text { and } \mathrm{Sm} / \mathbf{N d} \text { Age Dating Summary }}$

TABLE 5	Sm-Nd	Rb-Sr
Sample	Age	Age
Ib/K1	2,090	2,210
Ib/8	2,900	1,790
D1	1,450	1,660
Ib/5	1,100	1,430
D45	1,630	530
D58	$\mathbf{3 , 2 0 0}$	1,930
Table 30		

The Southeast Australian Lithosphere Mantle

According to the article ${ }^{58}$ this specimen was dated in 1987 by scientists from The Australian National University. According to the article ${ }^{58}$ the age of the samples is 1.5 billion years. If we run the various isotope ratios ${ }^{59}$ from two different tables in the article through Microsoft Excel we get the following values respectively:
Rb/Sr Age Dating Summary

Average	1,905	42,639	
Maximum	11,657	218,042	
Minimum	134	$-15,716$	
Difference	11,523	233,758	
Table 31			

Below we can see the maximum ages obtained from the second table. The oldest age is 18 times older than the Big Bang explosion. It is sixty two times older than the so called age of the Earth.

87Rb/86Sr, Maximum Ages

Age	
218,042	Age
$\mathbf{6 4 , 7 7 0}$	$\mathbf{4 5 , 2 0 7}$
54,457	26,113
48,074	17,246
45,734	11,813

Table 32

Strontium, Neodymium and Lead Isotopic

According to the article ${ }^{60}$ this specimen was dated in 1988 by scientists from the Department of Terrestrial Magnetism. Carnegie Institution of Washington. Throughout the article the author admits that the dates are contradicting and unreliable: "For sample 7541. the apatite eclogite, the range observed in both $\mathrm{Rh} / \mathrm{Sr}$ and $\mathrm{Sm} / \mathrm{Nd}$ for the whole-rock and mineral separates is quite small resulting in very imprecise "ages" of 400 Ma for $\mathrm{Rb}-\mathrm{Sr}$ and 1110 Ma for $\mathrm{Sm}-\mathrm{Nd}$." ${ }^{61}$ If we run the Lead isotope ratios ${ }^{62}$ from the article through Microsoft Excel we get the following values respectively:

Pb 207/206 Age Dating Summary

Age	Age
$\mathbf{4 , 9 3 3}$	$\mathbf{4 , 9 2 8}$
4,961	$\mathbf{4 , 9 5 6}$
$\mathbf{4 , 9 5 2}$	$\mathbf{4 , 9 4 7}$
$\mathbf{4 , 9 5 2}$	$\mathbf{4 , 9 5 7}$
$\mathbf{4 , 9 4 2}$	$\mathbf{4 , 9 2 7}$
$\mathbf{4 , 9 7 8}$	$\mathbf{4 , 9 5 2}$
$\mathbf{4 , 9 4 0}$	$\mathbf{4 , 9 5 4}$
$\mathbf{4 , 9 4 7}$	

Table 33

Sr, Nd, and Os Isotope Geochemistry

According to the article ${ }^{63}$ this specimen [Camp Creek area, Arizona] was dated in 1987 by scientists from The University of Tennessee, the University of Michigan, the University of California, Leeds University, and the University of Chicago. According to the article ${ }^{64}$ the age of the samples is 120 million years. If we run the various isotope ratios ${ }^{65}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

Rb/Sr and $\mathrm{Sm} / \mathbf{N d}$ Age Dating Summary

Summary	87Rb/86Sr	87Rb/86Sr	147Sm/144Nd	147Sm/144Nd
Average	310	103	120	159
Maximum	1,092	207	123	400
Minimum	0	0	120	119
Difference	1,092	207	3	281

Table 34
The author's choice of 120 million years is just a guess.

Pb, Nd and Sr Isotopic Geochemistry

According to the article ${ }^{66}$ this specimen [Bellsbank kimberlite, South Africa] was dated in 1991 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article ${ }^{67}$ the age of the samples is just 1 million years. If we run the various isotope ratios ${ }^{68}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	$\mathbf{5 , 0 5 7}$	$\mathbf{5 , 0 9 2}$	$\mathbf{1 0 , 1 8 2}$	$\mathbf{- 1 , 5 0 2}$
Maximum	$\mathbf{5 , 1 2 0}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{0}$
Minimum	$\mathbf{5 , 0 0 2}$	0	0	$\mathbf{- 3 , 5 9 3}$
Difference	$\mathbf{1 1 8}$	$\mathbf{8 , 5 8 4}$	$\mathbf{1 7 , 1 7 1}$	$\mathbf{3 , 5 9 3}$
Table 35				

In tables 36 to 39 we can see some of the astounding spread of dates [million of years]. The oldest date is over 17 billion years old. The youngest is less than negative 3.5 billion years. The difference between the two is over 20 billion years. According to the article the true age of the rock is just one million years old!

208Pb/232Th, Maximum Ages

Age	Age	Age	Age
17,171	13,322	9,737	$\mathbf{7 , 9 6 8}$
15,343	13,202	9,707	$\mathbf{7 , 8 3 0}$
15,299	13,001	$\mathbf{9 , 0 4 9}$	$\mathbf{7 , 2 5 0}$
15,136	11,119	$\mathbf{8 , 4 2 0}$	$\mathbf{6 , 9 7 2}$
15,054	10,873	$\mathbf{8 , 4 1 9}$	$\mathbf{6 , 6 2 8}$
13,476	10,758	$\mathbf{8 , 3 6 8}$	$\mathbf{6 , 5 7 7}$

Table 36
$\underline{\underline{206 P b} / 238 U}$, Maximum Ages

Age	Age	Age
$\mathbf{8 , 5 8 4}$	$\mathbf{6 , 6 5 6}$	$\mathbf{5 , 5 7 6}$
$\mathbf{7 , 9 7 5}$	$\mathbf{6 , 6 5 4}$	$\mathbf{5 , 5 2 0}$
$\mathbf{7 , 3 1 4}$	$\mathbf{6 , 5 1 8}$	$\mathbf{5 , 2 8 5}$
$\mathbf{7 , 1 8 4}$	$\mathbf{6 , 4 4 8}$	$\mathbf{5 , 1 5 9}$
$\mathbf{6 , 8 6 1}$	$\mathbf{5 , 7 5 8}$	$\mathbf{5 , 0 9 9}$
Table 37		

Pb 207/206, Maximum Ages

Age	Age	Age	Age
$\mathbf{5 , 1 2 0}$	$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 4 9}$
$\mathbf{5 , 1 0 9}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 9}$	$\mathbf{5 , 0 4 5}$
$\mathbf{5 , 0 9 7}$	$\mathbf{5 , 0 6 6}$	$\mathbf{5 , 0 5 1}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 7 7}$	$\mathbf{5 , 0 6 5}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 4 4}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 2}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 3 3}$
$\mathbf{5 , 0 6 7}$	$\mathbf{5 , 0 6 0}$	$\mathbf{5 , 0 5 0}$	$\mathbf{5 , 0 2 2}$

Table 38
87Rb/86Sr, Minimum Ages

Age	Age	Age	Age
$-3,593$	$-2,981$	$-1,917$	$-1,323$
$-3,231$	$-2,725$	$-1,611$	$-1,245$
$-3,089$	$-2,050$	$-1,499$	$-1,229$
$-3,067$	$-1,926$	$-1,370$	$-1,194$

Table 39

Sr, Nd, and Pb isotopes

According to the article ${ }^{68}$ this specimen [eastern China] was dated in 1992 by scientists from the University Of Rochester, New York, Guiyang University in China, and the United States Geological Survey, Colorado. According to the article: "Observed high $\mathrm{Th} / \mathrm{U}, \mathrm{Rb} / \mathrm{Sr}, 87 \mathrm{Sr} / 86 \mathrm{Sr}$ and Delta 208 , low $\mathrm{Sm} / \mathrm{Nd}$ ratios, and a large negative Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga , support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component." ${ }^{68}$ If we run the various isotope ratios ${ }^{69}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Dating	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	14,198	7,366	5,014
Maximum	94,396	22,201	5,077
Minimum	79	1,117	4,945
Difference	94,317	21,083	131
Table 40			

If the true age is 2.9 billion years why so much discordance? In tables 41 to 43 we can see some of the astounding spread of dates [million of years]. The oldest date is over 94 billion years old. The youngest is 79 million years. The difference between the two is over 94 billion years. The oldest date is 1,194 times older than the youngest. According to the article the true age of the rock is 2.9 billion years old!

208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{9 4 , 3 9 6}$	$\mathbf{3 9 , 2 6 7}$	$\mathbf{1 0 , 5 9 5}$	$\mathbf{8 , 1 7 1}$
$\mathbf{9 0 , 6 8 3}$	$\mathbf{2 6 , 2 6 6}$	$\mathbf{1 0 , 2 8 4}$	$\mathbf{7 , 7 8 9}$
$\mathbf{7 4 , 6 3 9}$	$\mathbf{1 8 , 3 3 4}$	$\mathbf{9 , 3 2 8}$	$\mathbf{7 , 6 3 8}$
$\mathbf{5 8 , 1 5 3}$	$\mathbf{1 6 , 3 5 7}$	$\mathbf{8 , 8 2 1}$	$\mathbf{7 , 3 7 5}$
$\mathbf{5 5 , 3 2 4}$	$\mathbf{1 4 , 2 5 0}$	$\mathbf{8 , 7 7 1}$	$\mathbf{7 , 3 1 7}$
$\mathbf{4 5 , 2 4 2}$	$\mathbf{1 1 , 2 1 5}$	$\mathbf{8 , 4 0 3}$	$\mathbf{5 , 7 5 9}$

Table 41
206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{2 2 , 2 0 1}$	$\mathbf{9 , 8 7 8}$	$\mathbf{7 , 3 4 8}$	$\mathbf{5 , 7 4 6}$
$\mathbf{2 1 , 8 1 3}$	$\mathbf{9 , 6 5 6}$	$\mathbf{7 , 3 3 5}$	$\mathbf{5 , 7 0 0}$
$\mathbf{1 9 , 3 2 0}$	$\mathbf{9 , 0 5 4}$	$\mathbf{7 , 2 4 9}$	$\mathbf{5 , 2 1 8}$
$\mathbf{1 6 , 6 5 6}$	$\mathbf{8 , 2 4 2}$	$\mathbf{7 , 2 0 2}$	$\mathbf{5 , 2 0 1}$
$\mathbf{1 6 , 2 0 0}$	$\mathbf{8 , 0 4 4}$	$\mathbf{7 , 0 1 9}$	$\mathbf{5 , 1 6 3}$
$\mathbf{1 4 , 7 4 8}$	$\mathbf{7 , 9 9 6}$	$\mathbf{6 , 9 2 3}$	$\mathbf{5 , 1 5 9}$
$\mathbf{1 3 , 6 0 7}$	$\mathbf{7 , 5 9 0}$	$\mathbf{6 , 8 4 8}$	$\mathbf{5 , 0 9 9}$
$\mathbf{1 1 , 2 5 6}$	$\mathbf{7 , 4 2 2}$	$\mathbf{6 , 2 9 2}$	$\mathbf{4 , 8 1 2}$

Table 42

Production of Jurassic Rhyolite

According to the article ${ }^{70}$ this specimen [Patagonia, South America] was dated in 1994 by scientists from the British Antarctic Survey, National University, Argentina. According to the article: "Primary magmas of andesitic composition were generated by partial melting of mafic" Grenvillian" lower crust, indentified by depleted-mantle model ages of 1150$1600 \mathrm{Ma} .{ }^{"}{ }^{70}$ If we run the various isotope ratios ${ }^{71}$ from two different tables in the article through Microsoft Excel we get the following values respectively:

$\mathbf{R b} / \mathbf{S r}$ Age Dating Summary	
Average	$\mathbf{4 3 2}$
Maximum	$\mathbf{1 7 , 3 8 7}$
Minimum	$\mathbf{- 4 , 6 3 3}$
Difference	$\mathbf{2 2 , 0 2 0}$

Table 43

Evolution of Reunion Hotspot Mantle

According to the article ${ }^{72}$ this specimen [Reunion and Mauritius Islands] was dated in 1995 by scientists from the University of Hawaii. According to the article: "Whole-rock powder obtained from P. Krishnamurthy. (87Sr/86 Sr), and $\mathrm{em}(\mathrm{T})$ are age-corrected values; $T=66 \mathrm{Ma}$ for the drill hole lavas." ${ }^{73}$ If we run the various isotope ratios ${ }^{74}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary			
Table	232Th/208Pb	206Pb/238U	207Pb/206Pb
Summaries	Age	Age	Age
Average	$\mathbf{8 , 0 7 9}$	$\mathbf{4 , 4 4 9}$	$\mathbf{4 , 9 7 6}$
Maximum	$\mathbf{1 3 , 2 8 7}$	$\mathbf{6 , 2 8 5}$	$\mathbf{5 , 0 1 6}$
Minimum	$\mathbf{5 , 6 4 1}$	$\mathbf{3 , 0 1 0}$	$\mathbf{4 , 9 5 3}$
Difference	$\mathbf{7 , 6 4 6}$	$\mathbf{3 , 2 7 6}$	$\mathbf{6 3}$
Table 44			

Table 44
$\underline{\text { 208Pb/232Th, Maximum Ages }}$

Age	Age	Age	Age
13,287	$\mathbf{8 , 7 2 5}$	$\mathbf{7 , 3 6 3}$	$\mathbf{6 , 5 4 0}$
11,832	$\mathbf{8 , 6 0 9}$	7,362	$\mathbf{6 , 4 7 9}$
11,017	$\mathbf{7 , 5 4 1}$	$\mathbf{7 , 0 8 0}$	$\mathbf{6 , 3 2 3}$
10,357	7,517	$\mathbf{7 , 0 1 7}$	$\mathbf{5 , 6 6 0}$
9,101	$\mathbf{7 , 4 4 6}$	$\mathbf{6 , 6 7 9}$	$\mathbf{5 , 6 4 1}$

Table 45
206Pb/238U, Maximum Ages

206Pb/238U, Maximum Ages			
Age	Age	Age	Age
$\mathbf{6 , 2 8 5}$	$\mathbf{4 , 9 0 3}$	$\mathbf{4 , 1 4 1}$	$\mathbf{3 , 8 7 5}$
$\mathbf{6 , 1 6 5}$	$\mathbf{4 , 6 3 3}$	$\mathbf{4 , 1 3 3}$	$\mathbf{3 , 6 4 7}$
$\mathbf{5 , 7 6 7}$	$\mathbf{4 , 3 4 2}$	$\mathbf{4 , 0 1 1}$	$\mathbf{3 , 5 4 8}$
$\mathbf{5 , 5 5 3}$	$\mathbf{4 , 2 5 8}$	$\mathbf{4 , 0 0 1}$	$\mathbf{3 , 3 6 9}$
$\mathbf{5 , 1 5 2}$	$\mathbf{4 , 2 2 0}$	$\mathbf{3 , 9 7 3}$	$\mathbf{3 , 0 1 0}$

Table 46

According to dating charts in the article, the true age is just 66 million years old! ${ }^{74}$

An Extremely Low U/Pb Source

According to the article ${ }^{75}$ this specimen [lunar meteorite] was dated in 1993 by scientists from the United States Geological Survey, Colorado, the United States Geological Survey, California and The National Institute of Polar Research, Tokyo. According to the article: "The $\mathrm{Pb}-\mathrm{Pb}$ internal isochron obtained for acid leached residues of separated mineral fractions yields an age of $3940 \pm 28 \mathrm{Ma}$, which is similar to the $\mathrm{U}-\mathrm{Pb}(3850 \pm 150 \mathrm{Ma})$ and $\mathrm{Th}-\mathrm{Pb}(3820 \pm 290$ Ma) internal isochron ages. The $\mathrm{Sm}-\mathrm{Nd}$ data for the mineral separates yield an internal isochron age of $3871 \pm 57 \mathrm{Ma}$ and an initial $143 \mathrm{Nd} /\left[44 \mathrm{Nd}\right.$ value of 0.50797 ± 10. The Rb-Sr data yield an internal isochron age of $3840 \pm 32 \mathrm{Ma}$." ${ }^{75}$
$\mathbf{R b} / \mathbf{S r}$ Age Dating Summary

Average	$\mathbf{3 , 6 1 9}$
Maximum	$\mathbf{5 , 3 8 5}$
Minimum	$\mathbf{7 2 1}$
Difference	$\mathbf{4 , 6 6 4}$

Table 47

Uranium Age Dating Summary				
Table	207Pb/206Pb	206Pb/238U	208Pb/232Th	207Pb/235U
Summaries	Age	Age	Age	Age
Average	4,673	$\mathbf{8 , 0 3 5}$	$\mathbf{1 0 , 1 4 8}$	4,546
Maximum	$\mathbf{5 , 0 1 8}$	$\mathbf{5 6 , 9 2 3}$	$\mathbf{6 5 , 2 8 6}$	$\mathbf{8 , 1 2 8}$
Minimum	$\mathbf{3 , 9 6 1}$	$\mathbf{1 , 4 7 7}$	$\mathbf{2 , 5 4 2}$	$\mathbf{2 , 7 8 4}$
Difference	$\mathbf{1 , 0 5 7}$	$\mathbf{5 5 , 4 4 5}$	$\mathbf{6 2 , 7 4 4}$	$\mathbf{5 , 3 4 4}$

Table 48
The article claims that the $\mathrm{Rb} / \mathrm{Sr}$ age is 3.8 billion years for this meteorite. If that is the true age why are all the Uranium/Thorium/Lead dates ${ }^{76}$ so stupid? Or are they right and the $\mathrm{Rb} / \mathrm{Sr}$ is wrong?
208Pb/232Th, Maximum Ages

Age	Age	Age	Age
$\mathbf{6 5 , 2 8 6}$	$\mathbf{1 4 , 4 3 0}$	$\mathbf{9 , 0 9 4}$	$\mathbf{5 , 4 0 1}$
$\mathbf{3 3 , 8 9 8}$	$\mathbf{1 4 , 4 1 0}$	$\mathbf{6 , 5 2 0}$	$\mathbf{5 , 3 9 6}$
25,013	$\mathbf{1 3 , 1 0 7}$	$\mathbf{6 , 1 6 6}$	$\mathbf{5 , 3 6 5}$
$\mathbf{2 2 , 1 7 8}$	$\mathbf{1 2 , 7 3 8}$	$\mathbf{6 , 1 2 1}$	$\mathbf{5 , 0 9 8}$
21,204	$\mathbf{1 1 , 6 4 1}$	$\mathbf{5 , 6 7 1}$	$\mathbf{5 , 0 3 5}$
$\mathbf{1 7 , 6 1 1}$	$\mathbf{1 1 , 1 7 4}$	$\mathbf{5 , 4 0 8}$	$\mathbf{4 , 6 7 8}$

Table 49
206Pb/238U, Maximum Ages

Age	Age	Age	Age
$\mathbf{5 6 , 9 2 3}$	$\mathbf{1 0 , 8 9 5}$	$\mathbf{6 , 7 6 4}$	$\mathbf{5 , 7 7 7}$
27,313	$\mathbf{1 0 , 2 7 8}$	$\mathbf{6 , 6 7 0}$	$\mathbf{5 , 6 2 5}$
17,873	$\mathbf{9 , 6 5 3}$	$\mathbf{6 , 4 4 9}$	$\mathbf{5 , 6 0 2}$
13,680	$\mathbf{8 , 0 0 9}$	$\mathbf{6 , 4 3 6}$	$\mathbf{5 , 2 7 8}$
13,623	$\mathbf{7 , 3 9 5}$	$\mathbf{6 , 0 7 0}$	$\mathbf{5 , 1 4 7}$

Table 50

The 72 Ma Geochemical Evolution

According to the article ${ }^{77}$ this specimen [Madeira Archipelago] was dated in 2000 by scientists from Germany. The average Lead date is 705 times older than the average Rubidium date. The true age is claimed to be 430 million years old.
${ }^{77}$ If we run the various isotope ratios ${ }^{78}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary

Table	207Pb/206Pb	87Rb/86Sr	147Sm/144Nd
Summaries	Age	Age	Age
Average	4,938	7	10
Maximum	5,199	55	$\mathbf{1 6 4}$
Minimum	4,898	-4	0
Difference	$\mathbf{3 0 2}$	59	$\mathbf{1 6 4}$

Table 51
If the true age is 430 million years than none of the dating methods are even vaguely close. The oldest date is 731 times older than the youngest.

The Himalayan Collision Zone

According to the article ${ }^{79}$ this specimen [East Tibet] was dated in 2000 by scientists from Germany. As far as the age goes the author states: "Partial melting of the mantle source was most likely triggered by a Cenozoic asthenospheric mantle diapir related to Indian-Asian continent collision at $65-45 \mathrm{Ma}$. Rising and emplacement of carbonatitic magmas with coeval potassium-rich magmas took place in the tectonic regime of the transition from transpression to transtension at Eocene/Oligocene boundary in the EIACZ." ${ }^{80}$ He also states: "The initial "Nd values and $87 \mathrm{Sr} / 86 \mathrm{Sr}$ ratios were calculated at $t=35 \mathrm{Ma} .{ }^{081}$ If we run the various isotope ratios ${ }^{82}$ from two different tables in the article through Isoplot we get the following values respectively:

Pb 207/206, Dating Summary

Dating	207Pb/206Pb	87Rb/86Sr
Summary	Age	Age
Average	$\mathbf{5 , 0 1 5}$	0
Maximum	5,023	0
Minimum	4,976	0
Difference	47	0
Table 52		

If the specimen is of the Eocene era [Less than 100 million years old] how can the Lead/Lead dating produce such rubbish? If we run the $\mathrm{Rb} / \mathrm{Sr}$ ratios through Microsoft Excel we get zero ages!

Evidence for a Non Magmatic component

According to the article ${ }^{83}$ this specimen [Yukon, Canada] was dated in 2001 by Canadian scientists from the University of Alberta, and Dalhousie University, Halifax. According to Argon dating the age of the material is 70 million years. ${ }^{84}$ If we run the various isotope ratios ${ }^{85}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary		
Table	207Pb/206Pb	87Rb/86Sr
Summaries	Age	Age
Average	$\mathbf{4 , 9 5 5}$	71
Maximum	$\mathbf{5 , 2 1 4}$	101
Minimum	$\mathbf{4 , 9 1 8}$	$\mathbf{6 0}$
Difference	296	41
Table 53		

If we look at the average ages we see that there is a 7 thousand percent difference between them! If we compare the youngest and oldest dates we see that there is an 8,540 percent difference between them.

The Origin Of Geochemical Diversity

According to the article ${ }^{86}$ this specimen [lunar basalt] was dated in 2007 by scientists from New Mexico University. According to $\mathrm{Rb} / \mathrm{Sr}$ isochron diagram the age of the material is 3.678 billion years. ${ }^{87}$ If we run the various isotope ratios ${ }^{88}$ from two different tables in the article through Isoplot we get the following values respectively:

Age Dating Summary

Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	$\mathbf{4 , 6 3 5}$	$\mathbf{6 , 5 6 5}$	$\mathbf{4 , 6 7 2}$
Maximum	$\mathbf{5 , 1 1 1}$	$\mathbf{1 8 , 2 1 3}$	$\mathbf{7 , 0 9 4}$
Minimum	$\mathbf{4 , 0 2 8}$	$\mathbf{3 , 7 0 6}$	$\mathbf{3 , 4 7 6}$
Difference	$\mathbf{1 , 0 8 2}$	$\mathbf{1 4 , 5 0 6}$	$\mathbf{3 , 6 1 8}$

Table 54

The dating methods all disagree with each other. There is a wide spread of dates which are just random.

Mechanisms For Incompatible-Element Enrichment

According to the article ${ }^{89}$ this specimen [meteorite Northwest Africa] was dated in 2009 by scientists from Lawrence Livermore National Laboratory, University of New Mexico, the University of California, Berkeley, and Arizona State University. The author states: "Rubidium-Strontium isotopic analyses yield an age of $2,947 \pm 16 \mathrm{Ma}$ " If we run the various isotope ratios ${ }^{90}$ from a table in the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary

Average	$\mathbf{5 , 4 8 3}$
Maximum	$\mathbf{1 3 , 4 9 7}$
Minimum	$\mathbf{1 , 9 1 7}$
Difference	$\mathbf{1 1 , 5 7 9}$

Table 55
Out of the eleven isotope ratios, two returned dates over ten billion years old.

Constraints On Martian Differentiation Processes

According to the article ${ }^{91}$ this specimen [Martian meteorite] was dated in 1997 by scientists from the NASA Johnson Space Centre, Houston, Texas, the University of Tennessee, and Lockheed Martin, Houston, Texas. According to the article ${ }^{91}$ the age range is: "The neodymium isotopic systematics of QUE 94201 are not consistent with significant melting between 4.525 Ga and 327 Ma ." If we run the various isotope ratios ${ }^{92}$ from two different tables [1 and 4] in the article through Microsoft Excel we get the following values respectively:

Rb/Sr Age Dating Summary		
Summary	Table 1	Table 4
Average	618	$-34,834$
Maximum	1,765	4,642
Minimum	-98	$-118,922$
Difference	$\mathbf{1 , 6 6 8}$	123,564

Table 56
Instead of having a 4.2 billion year spread we have a 123 billion year spread of dates. Both tables in the article give dates way off the so called true age.

Geochemistry of the Volcan de l'Androy

According to the article ${ }^{93}$ this specimen from the Androy massif in south eastern Madagascar was dated in 2008 by scientists from the University Of Hawaii. According to the article Argon and Rubidium dating defined the so called true ages as: "The R2 rhyolites define a whole-rock $\mathrm{Rb} / \mathrm{Sr}$ isochron of 84 Ma , the same, within error, as an $40 \mathrm{Ar} / 39 \mathrm{Ar}$ sanidine age reported by earlier workers." ${ }^{93}$ If we run the various isotope ratios ${ }^{94}$ from a table in the article through Isoplot we get the following values respectively:

Pb 207/206, Dating Summary

Average	$\mathbf{5 , 0 0 4}$	$\mathbf{4 , 9 9 9}$
Maximum	$\mathbf{5 , 0 4 8}$	$\mathbf{5 , 0 2 9}$
Minimum	$\mathbf{4 , 9 8 0}$	$\mathbf{4 , 9 8 4}$
Difference	$\mathbf{6 7}$	$\mathbf{1 8}$
Table 57		

The Lead dating give ages that are sixty times older than the $\mathrm{Rb} / \mathrm{Sr}$ dates.

Continental Lithospheric Contribution

According to the article ${ }^{95}$ this specimen from southern Portugal was dated in 1997 by scientists from France. According to the article Argon and Rubidium dating defined the so called true ages as: "The age of the intrusion and crystallization of the alkaline rocks of the Serra de Monchique is 72 Ma , based on $\mathrm{Rb} / \mathrm{Sr}$ and K / Ar dating." ${ }^{96}$ If we run the various isotope ratios ${ }^{97}$ from a table in the article through Isoplot we get the following values respectively:

Age Dating Summary

Table	207Pb/206Pb	208Pb/232Th	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	4,920	6,126	4,539	$\mathbf{- 6 2}$
Maximum	4,949	10,084	7,723	$\mathbf{- 5 0}$
Minimum	4,894	2,616	2,306	$-\mathbf{- 7 5}$
Difference	55	7,467	5,417	25
Table 58				

The date of 72 million years is just a guess. The Thorium/Lead method gives dates 140 times older. The Uranium/Lead methods give dates 107 times older. Below we can see the maximum ages [million years] calculated form isotope ratios. Compare these with the so called true age!

Maximum Ages	
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	206Pb/238U
10,084	7,723
9,320	7,060
8,101	6,507
7,502	6,387
7,080	6,206
6,891	5,143
6,655	4,734
6,313	4,186
5,830	3,768
5,755	3,761
5,029	3,487
Table 59	

Garnet Granulite Xenoliths

According to the article ${ }^{98}$ this specimen from the northern Baltic shield was dated in 2001 by scientists from England, USA and Russia. According to the article Argon dating defined the so called true ages as 400 to 2200 million years. ${ }^{99}$ If we run the various isotope ratios ${ }^{\mathbf{1 0 0}}$ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary		
Table	206Pb/238U	207Pb/206Pb
Summaries	Age	Age
Average	$\mathbf{1 7 , 0 0 2}$	$\mathbf{5 , 0 4 6}$
Maximum	$\mathbf{4 0 , 0 5 9}$	$\mathbf{5 , 2 9 5}$
Minimum	$\mathbf{1 , 6 0 8}$	$\mathbf{3 , 9 0 8}$
Difference	$\mathbf{3 8 , 4 5 2}$	$\mathbf{1 , 3 8 7}$
Table 60		

Below are the maximum ages calculated from isotope ratios in tables 4 and 5 in the article:

206Pb/238U	206Pb/238U		206Pb/238U		206Pb/238U
Age	Age		Age		Age
40,059	28,118		21,092		13,724
35,742	27,127		16,026		13,404
34,459	25,884		14,371		12,747
33,978	21,209		14,272		10,956
Table 61					
206Pb/238U, Maximum Ages					
206Pb/238U		206Pb/238U		206Pb/238U	
Age		Age		Age	
20,648		13,724		10,956	956
17,527		13,404		10,049	049
16,336		12,622		6,792	92
15,626		12,165		6,265	65
15,018		11,432		5,865	86
Table 62					

If we run more ratios form and online supplement we get ages uniformly 5 billion years old. Compare these with the so called true age!

The Isotope and Trace Element Budget

According to the article ${ }^{102}$ this specimen from the Devil River Arc System, New Zealand was dated in 2000 by scientists from Germany. According to the article, the so called true ages is Cambrian. ${ }^{102}$ If we run the various isotope ratios ${ }^{103}$ from table 4 in the article through Isoplot we get the following values respectively:

Age Dating Summary

Age Dating Summary			
Table	207Pb/206Pb	206Pb/238U	87Rb/86Sr
Summaries	Age	Age	Age
Average	$\mathbf{4 , 9 7 0}$	$\mathbf{1 9 , 1 4 3}$	500
Maximum	$\mathbf{4 , 9 8 6}$	21,761	501
Minimum	$\mathbf{4 , 9 3 2}$	$\mathbf{1 5 , 1 5 0}$	$\mathbf{4 9 5}$
Difference	$\mathbf{5 4}$	$\mathbf{6 , 6 1 1}$	$\mathbf{6}$

Table 63

The Lead/Lead dates are ten times too old and the Uranium/Lead dates are 40 times too old!

Fluid Flow and Diffusion

According to the article ${ }^{\mathbf{1 0 4}}$ this specimen from the Waterville Formation in south-central Maine, USA, was dated in 1997 by scientists from England and USA. According to the article, the so called true age is: "the $376 \pm 6 \mathrm{Ma} \mathrm{Rb}-\mathrm{Sr}$ whole-rock age of the syn-metamorphic Hallowell pluton." ${ }^{104}$ According to isochron diagrams in the article ${ }^{105}$ the model age is between 342 to 391 million years. The article has an age range diagram ${ }^{106}$ which claims that the maximum age is 425 million years. If we run the various isotope ratios ${ }^{107}$ from table 4 in the article through Isoplot we get the following values respectively:

Rb/Sr Age Dating Summary	
Average	$\mathbf{7 4 6}$
Maximum	2,063
Minimum	316
Difference	1,747
Table 64	

Out of the 150 isotopic ratios in the essay, 134 gave ages greater than the so called maximum age limit. Twenty six gave ages that were more than twice the maximum limit.

Temporal Evolution of the Lithospheric Mantle

According to the article ${ }^{\mathbf{1 0 8}}$ this specimen from the Eastern North China Craton was dated in 2009 by scientists from China, USA and Australia. Various tables ${ }^{109}$ in the essay have either calculated dates or ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 32 billion year range.

Age Dating Summary

Age Dating Summary				
Table	147Sm/144Nd	176Lu/176Hf	187Re/188Os	87Rb/86Sr
Summaries	Age	Age	Age	Age
Average	291	-220	1,048	9
Maximum	$\mathbf{3 , 0 7 9}$	$\mathbf{4 , 1 9 2}$	20,710	22
Minimum	$-3,742$	$-9,369$	$-11,060$	0
Difference	6,821	13,561	31,770	22

Table 65

Petrogenesis and Origins of Mid-Cretaceous

According to the article ${ }^{\mathbf{1 1 0}}$ this specimen from the Intraplate Volcanism in Marlborough, New Zealand was dated in 2010 by scientists from New Zealand. According to the essay: "the intraplate basalts in New Zealand that have been erupted intermittently over the last c. $100 \mathrm{Myr}{ }^{1111}$ Various tables ${ }^{112}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 10 billion year range. None of the Lead based dating methods even come vaguely close to a Cretaceous age.

Age Dating Summary

Table	207Pb/206Pb	207Pb/235U	87Rb/86Sr	208Pb/232Th	206Pb/238U
Summaries	Age	Age	Age	Age	Age
Average	$\mathbf{4 , 8 7 6}$	$\mathbf{4 , 4 1 6}$	59	$\mathbf{6 , 3 3 3}$	$\mathbf{3 , 5 1 5}$
Maximum	$\mathbf{4 , 9 4 5}$	$\mathbf{5 , 1 5 9}$	$\mathbf{8 5}$	$\mathbf{1 0 , 7 1 6}$	$\mathbf{5 , 7 1 7}$
Minimum	$\mathbf{4 , 8 3 6}$	$\mathbf{4 , 0 8 8}$	$\mathbf{1 5}$	$\mathbf{4 , 7 8 5}$	$\mathbf{2 , 7 1 2}$
Difference	$\mathbf{1 0 9}$	$\mathbf{1 , 0 7 1}$	$\mathbf{7 0}$	$\mathbf{5 , 9 3 1}$	$\mathbf{3 , 0 0 5}$

Table 66

The Petrogenetic Association of Carbonatite

According to the article ${ }^{113}$ this specimen from the Spitskop Complex, South Africa was dated in 1999 by scientists from South Africa. According to the essay: "The 1,341 Ma old Spitskop Complex in South Africa is one of a series of intrusions of alkaline affinity." ${ }^{113}$ Various tables ${ }^{114}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other.

Age Dating Summary		
Dating	87Rb/86Sr	207Pb/206Pb
Summary	Age	Age
Average	$\mathbf{- 6 , 0 1 2}$	$\mathbf{5 , 0 5 6}$
Maximum	$\mathbf{2 , 7 6 2}$	5,126
Minimum	$-\mathbf{6 6 , 4 9 9}$	$\mathbf{4 , 6 4 9}$
Difference	$\mathbf{6 9 , 2 6 2}$	477
Table 67		

Nine of the twenty six $\mathrm{Rb} / \mathrm{Sr}$ dates are over three billion years in error. Seven are over eleven billion years in error. The thirteen Lead 206/207 dates are all totally way off.

Geochemistry Of The Jurassic Oceanic Crust

According to the article ${ }^{15}$ this specimen from the Canary Islands was dated in 1998 by scientists from Germany. According to the essay: "An Sm-Nd isochron gives an age of $178 \pm 17 \mathrm{Ma}$, which agrees with the age predicted from paleomagnetic data. ${ }^{1115}$ The article places the age in the late Cretaceous period. Various tables ${ }^{116}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates over a 350 billion year range! None of the Lead or Rubidium based dating methods even come vaguely close to a Jurassic age.

Age Dating Summary		
Dating	87Rb/86Sr	207Pb/206Pb
Summary	Age	Age
Average	$\mathbf{- 1 4 9 , 4 8 8}$	$\mathbf{4 , 9 7 4}$
Maximum	$\mathbf{5 1 , 9 6 7}$	$\mathbf{5 , 0 2 4}$
Minimum	$\mathbf{- 2 9 9 , 3 4 6}$	$\mathbf{4 , 8 4 5}$
Difference	$\mathbf{3 5 1 , 3 1 3}$	$\mathbf{1 7 9}$
Table 68		

The Age Of Dar Al Gani 476

According to the article ${ }^{117}$ this Martian meteorite was dated in 2003 by scientists from the University of New Mexico, NASA Johnson Space Centre, Lockheed Engineering and Science Company. According to the essay: "In either case, the fact that the Martian meteorites define a whole rock $\mathrm{Rb}-\mathrm{Sr}$ isochron with an age of 4.5 Ga require these reservoirs to have formed near the time of planet formation." ${ }^{117}$ A table ${ }^{118}$ in the essay has isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with the assumed age. There is a spread of dates of almost 18 billion year range! None of the Rubidium based dating methods even come vaguely close to the so called true age.

Rb/Sr Age Dating Summary

Average	$\mathbf{- 9 , 3 9 8}$
Maximum	$\mathbf{- 2 , 1 4 2}$
Minimum	$\mathbf{- 2 0 , 0 0 4}$
Difference	$\mathbf{1 7 , 8 6 2}$

Table 69

Petrogenesis Of The Flood Basalts

According to the article ${ }^{119}$ this basalt form the Northern Kerguelen Archipelago was dated in 1998 by scientists from the Massachusetts Institute Of Technology, University of Brussels, Belgium and the San Diego State University. According to the essay: "The dominance of this isotopic signature in archipelago lavas for 30 my and its presence in $\sim 40 \mathrm{Ma}$ gabbros is consistent with the previous interpretation that these are isotopic characteristics of the Kerguelen Plume." 119 Various tables ${ }^{\mathbf{1 2 0}}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong
disagreement with each other. There is a spread of dates of over a 44 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary

Mt Rabouillere	Age	Age	Age	Age	Age
Summary	$\mathbf{8 7 R b} / \mathbf{8 6 S r}$	$\mathbf{2 0 7 P b} / \mathbf{2 0 6 P b}$	$\mathbf{2 0 6 P b} / 238 \mathrm{U}$	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$
Average	$\mathbf{2 1}$	$\mathbf{5 , 0 0 8}$	$\mathbf{4 , 9 0 3}$	$\mathbf{4 , 9 7 5}$	$\mathbf{6 , 1 4 2}$
Maximum	$\mathbf{3 0}$	$\mathbf{5 , 0 1 9}$	$\mathbf{5 , 3 5 5}$	$\mathbf{5 , 1 0 0}$	$\mathbf{7 , 7 8 8}$
Minimum	-7	$\mathbf{5 , 0 0 0}$	$\mathbf{4 , 3 0 5}$	$\mathbf{4 , 7 9 3}$	$\mathbf{2 , 7 9 9}$
Difference	$\mathbf{3 8}$	$\mathbf{2 0}$	$\mathbf{1 , 0 5 0}$	$\mathbf{3 0 7}$	$\mathbf{4 , 9 8 9}$

Table 70
Age Dating Summary

Mount Bureau Summary	Age	Age	Age	Age	Age
	87Rb/86Sr	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th
Average	27	5,006	5,924	5,161	$\mathbf{8 , 4 1 0}$
Maximum	30	5,020	23,366	$\mathbf{8 , 4 9 6}$	44,378
Minimum	24	4,994	3,335	4,454	$\mathbf{2 , 6 5 0}$
Difference	6	26	$\mathbf{2 0 , 0 3 1}$	$\mathbf{4 , 0 4 2}$	$\mathbf{4 1 , 7 2 8}$

Table 71

Nature Of The Source Regions

According to the article ${ }^{\mathbf{1 2 1}}$ this lava from southern Tibet was dated in 2004 by scientists from the Open University in Milton Keynes, the University of Bristol and Cardiff University. According to the essay: "Most samples are Miocene in age, ranging from 10 to 25 Ma in the south and 19Ma to the present day in northern Tibet" ${ }^{122}$ Various tables ${ }^{123}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at strong disagreement with each other. There is a spread of dates of over a 88 billion year range! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary

Age Dating Summary				
North Tibet	208Pb/232Th	$\mathbf{2 0 7 P b} / 235 \mathrm{U}$	207Pb/206Pb	206Pb/238U
Summary	Million Years	Million Years	Million Years	Million Years
	11,420	$\mathbf{5 , 1 3 6}$	$4,980$	7,783
87Rb/86Sr	11,350	5,138	4,980	8,023
Model Age	13,475	$5,135$	4,987	8,305
13 Million Years	$11,504$	$5,140$	4,989	7,349
	$\mathbf{8 1 , 6 1 4}$	7,470	4,987	33,751
	88,294	7,471	4,991	33,742

Table 72

Age Dating Summary				
	208Pb/232Th	207Pb/235U	207Pb/206Pb	206Pb/238U
	Million Years	Million Years	Million Years	Million Years
	$\mathbf{1 1 , 1 0 2}$	$\mathbf{3 1 3}$	$\mathbf{4 , 9 8 2}$	$\mathbf{6 , 3 3 1}$
	$\mathbf{6 , 0 9 2}$	$\mathbf{9 4 6}$	$\mathbf{4 , 9 1 9}$	$\mathbf{5 , 7 9 9}$
87Rb/86Sr	$\mathbf{9 , 2 6 5}$	$\mathbf{2 6 6}$	$\mathbf{4 , 9 8 0}$	$\mathbf{6 , 6 8 2}$
Model Age	$\mathbf{4 , 8 2 6}$	238	$\mathbf{4 , 9 9 2}$	$\mathbf{4 , 0 8 6}$
13 Million Years	$\mathbf{8 , 2 0 5}$	294	$\mathbf{4 , 9 8 0}$	$\mathbf{5 , 5 6 7}$
	$\mathbf{2 5 , 0 1 5}$	447	$\mathbf{4 , 9 9 4}$	$\mathbf{1 3 , 3 2 8}$
	$\mathbf{3 3 , 1 9 1}$	482	$\mathbf{4 , 9 9 2}$	$\mathbf{1 5 , 0 5 3}$

Table 73

Generation Of Palaeocene Adakitic Andesites

According to the article ${ }^{124}$ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Palaeocene (c. $55-58 \mathrm{Ma}$) adakitic andesites from the Yanji area." ${ }^{\mathbf{1 2 4}}$ Numerous table and charts affirm this as the true age. ${ }^{125} \mathrm{~A}$ table ${ }^{126}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of over 10 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary						
Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U	207Pb/235U	
Summary	Age	Age	Age	Age	Age	
Average	51	5,022	$\mathbf{8 , 9 4 1}$	$\mathbf{8 , 7 5 4}$	$\mathbf{5 , 9 0 8}$	
Maximum	66	5,024	$\mathbf{1 0 , 5 1 8}$	$\mathbf{9 , 6 6 9}$	$\mathbf{6 , 0 5 2}$	
Minimum	40	5,020	7,800	$\mathbf{7 , 4 0 3}$	$\mathbf{5 , 6 4 1}$	
Difference	26	$\mathbf{3}$	$\mathbf{2 , 7 1 8}$	$\mathbf{2 , 2 6 6}$	411	

Table 74

Evidence For A Widespread Tethyan

According to the article ${ }^{127}$ this rock formation from North Eastern China was dated in 2007 by scientists from China and Japan. According to the essay the true age is: "Here, we report age-corrected $\mathrm{Nd}-\mathrm{Pb}-\mathrm{Sr}$ isotope data for $100-350 \mathrm{Ma}$ basalt, diabase, and gabbro from widely separated Tethyan locations in Tibet, Iran, Albania, the eastern Himalayan syntaxis, and the seafloor off NW Australia (Fig. 1)." ${ }^{128}$ The author concludes that the rocks are from the Cretaceous and Jurassic time periods: "We collected Early Jurassic to Early Cretaceous Neotethyan magmatic rocks in 1998 from outcrops along 1300 km of the Indus-Yarlung suture zone. ${ }^{129}$ Several tables ${ }^{130}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 60 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age.

Age Dating Summary				
Dating	87Rb/86Sr	207Pb/206Pb	208Pb/232Th	206Pb/238U
Summary	Age	Age	Age	Age
Average	$\mathbf{1 6 8}$	$\mathbf{4 , 9 9 9}$	$\mathbf{2 2 , 3 5 6}$	$\mathbf{7 , 0 1 4}$
Maximum	$\mathbf{1 , 7 3 9}$	$\mathbf{5 , 2 3 6}$	$\mathbf{5 8 , 7 9 6}$	$\mathbf{1 5 , 7 4 7}$
Minimum	$\mathbf{0}$	$\mathbf{4 , 9 8 2}$	$\mathbf{1 0 , 6 9 9}$	5,042
Difference	$\mathbf{1 , 7 3 9}$	$\mathbf{2 5 4}$	$\mathbf{4 8 , 0 9 6}$	$\mathbf{1 0 , 7 0 5}$
Table 75				

208Pb/232Th, Maximum Ages

| $208 \mathrm{~Pb} / 232 \mathrm{Th}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{5 8 , 7 9 6}$ | 29,705 | 18,607 | 11,427 |
| 54,206 | 27,710 | 18,121 | 11,377 |
| 48,252 | 27,422 | 17,797 | 11,366 |
| 47,976 | 26,674 | 17,787 | 11,241 |
| 46,117 | 26,369 | 17,591 | 10,718 |
| 42,203 | 25,972 | 17,536 | 10,699 |
| 42,192 | 25,590 | 17,054 | 10,699 |
| 41,604 | 25,096 | 16,053 | 10,300 |
| 41,343 | 24,010 | 15,299 | 9,357 |
| 41,231 | 22,718 | 14,340 | $\mathbf{8 , 6 3 2}$ |
| 39,637 | 22,307 | 13,845 | $\mathbf{8 , 4 8 6}$ |
| 38,125 | 22,228 | 13,772 | $\mathbf{8 , 0 5 7}$ |
| 37,115 | 21,827 | 13,652 | $\mathbf{6 , 4 9 7}$ |
| 35,012 | 21,560 | 13,404 | 5,573 |
| 33,584 | 19,910 | 13,403 | 5,425 |
| 31,556 | 19,594 | 13,006 | 4,869 |
| 31,286 | 19,148 | 12,171 | |
| 30,740 | 18,765 | 11,540 | |

Table 76
206Pb/238U, Maximum Ages

| $206 \mathrm{~Pb} / 238 \mathrm{U}$ |
| :---: | :---: | :---: | :---: | :---: |
| 15,747 | $\mathbf{1 1 , 3 0 9}$ | $\mathbf{8 , 7 7 0}$ | $\mathbf{6 , 6 0 2}$ | $\mathbf{5 , 7 2 4}$ |
| 15,067 | 11,248 | 8,508 | $\mathbf{6 , 5 8 9}$ | $\mathbf{5 , 7 2 0}$ |
| 14,363 | 10,360 | $\mathbf{8 , 3 1 5}$ | $\mathbf{6 , 4 2 1}$ | $\mathbf{5 , 6 0 1}$ |
| 13,580 | $\mathbf{9 , 6 4 3}$ | $\mathbf{8 , 3 1 4}$ | $\mathbf{6 , 3 9 8}$ | 5,599 |
| 13,204 | $\mathbf{9 , 4 2 7}$ | $\mathbf{8 , 0 7 2}$ | $\mathbf{6 , 3 6 9}$ | 5,573 |
| 12,780 | $\mathbf{9 , 3 0 0}$ | $\mathbf{8 , 0 2 4}$ | $\mathbf{6 , 3 5 7}$ | $\mathbf{5 , 5 1 5}$ |
| 11,757 | $\mathbf{9 , 1 2 3}$ | $\mathbf{7 , 6 0 4}$ | $\mathbf{6 , 2 1 9}$ | $\mathbf{5 , 4 6 2}$ |
| 11,659 | $\mathbf{9 , 0 1 4}$ | $\mathbf{7 , 5 0 4}$ | $\mathbf{5 , 8 6 3}$ | $\mathbf{5 , 3 1 1}$ |
| 11,537 | $\mathbf{8 , 9 9 6}$ | $\mathbf{7 , 0 5 6}$ | $\mathbf{5 , 8 6 1}$ | $\mathbf{5 , 2 8 6}$ |
| 11,313 | $\mathbf{8 , 9 5 4}$ | $\mathbf{7 , 0 0 2}$ | $\mathbf{5 , 8 0 7}$ | $\mathbf{5 , 1 2 0}$ |

Table 77

Post-Collisional Potassic And Ultrapotassic

According to the article ${ }^{131}$ this rock formation from south west Tibet was dated in 1999 by scientists from Austria. According to the essay the true age is: "Volcanic rocks from SW Tibet, with $40 \mathrm{Ar} / 39 \mathrm{Ar}$ ages in the range $17-25 \mathrm{Ma}$." ${ }^{131}$ Numerous table and charts affirm this as the true age. ${ }^{132}$ Two tables ${ }^{133}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.

Age Dating Summary			
87Rb/86Sr 207Pb/206Pb 208Pb/232Th 206Pb/238U Maximum Age Age Age 25 5,007 99,275 Age 25 5,007 95,541 5,944 25 5,001 71,706 25 5,000 70,277 25 4,997 68,343 2,715 25 4,988 67,704 2,646			

Table 78

Origin Of The Indian Ocean-Type Isotopic Signature

According to the article ${ }^{134}$ this rock formation the Philippine Sea plate was dated in 1998 by scientists from Department of Geology, Florida International University, Miami. According to the essay the true age is: "Spreading centers in three basins, the West Philippine Basin (37-60 Ma), the Parece Vela Basin (18-31 Ma), and the Shikoku Basin (17-25 Ma) are extinct, and one, the Mariana Trough ($0-6 \mathrm{Ma}$), is active (Figure 1)." ${ }^{134}$ Numerous table and charts affirm this as the true age. ${ }^{135}$ Two tables ${ }^{136}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 100 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 3,971 times older than the youngest date.

Age Dating Summary

Dating	Age	Age	Age	Age	Age
Summary	87Rb/86Sr	147Sm/144Nd	207Pb/206Pb	206Pb/238U	208Pb/232Th
Average	42	41	4,960	4,260	8,373
Maximum	55	54	4,989	$\mathbf{7 , 0 9 3}$	$\mathbf{1 3 , 4 3 0}$
Minimum	19	20	4,921	$\mathbf{1 , 9 0 4}$	$\mathbf{3 , 0 6 5}$
Difference	37	33	$\mathbf{6 8}$	5,188	$\mathbf{1 0 , 3 6 5}$

Table 79

U-Th-Pb Dating Of Secondary Minerals

According to the article ${ }^{137}$ this rock formation Yucca Mountain, Nevada was dated in 2008 by scientists from United States Geological Survey, Geological Survey of Canada, and the Australian National University. According to the essay the true age is unknown. ${ }^{138}$ Other authors have affirmed the same problem. ${ }^{139}$ Two tables ${ }^{140}$ in the essay have isotopic ratios which can be calculated. As we can see below they are all at radical disagreement with each other. There is a spread of dates of almost 353 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 350,000 times older than the youngest date.

Age Dating Summary

Dating				
207Pb/206Pb	206Pb/238U	208Pb/232Th	87Rb/86Sr	
Summary	Age	Age	Age	Age
Average	$\mathbf{3 , 4 5 9}$	4,891	$\mathbf{9 , 9 8 4}$	$\mathbf{1 2}$
Maximum	$\mathbf{8 , 1 2 6}$	31,193	352,962	13
Minimum	-445	1	2	11
Difference	$\mathbf{8 , 5 7 1}$	$\mathbf{3 1 , 1 9 2}$	$\mathbf{3 5 2 , 9 6 0}$	2

Table 80

Another table ${ }^{141}$ in the essay has a list of calculated dates As we can see below they are all at radical disagreement with each other. There is a spread of dates of 82 billion years! None of the Uranium/Lead based dating methods even come vaguely close to the so called true age. The oldest date is 82,000 times older than the youngest date.

Age Dating Summary

Dating	206Pb/238U	207Pb/235U	208Pb/232Th	87Rb/86Sr
Summary	Age	Age	Age	Age
Average	1,540	46	7,687	12
Maximum	20,209	486	82,030	13
Minimum	1	0	3	11
Difference	20,208	486	82,027	2
Table 81				

Conclusion

Brent Dalrymple states in his anti creationist book The Age of the Earth:
"Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{142}$
Looking at some of the dating it is obvious that precision is much lacking. He then goes on:
"Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{143}$

I his book he gives a table ${ }^{144}$ with radiometric dates of twenty meteorites. If you run the figures through Microsoft Excel, you will find that they are 98.7% in agreement. There is only a seven percent difference between the ratio of the smallest and oldest dates. As we have seen in this essay, such a perfect fit is attained by selecting data and ignoring other data. A careful study of the latest research shows that such perfection is illusionary at best. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
The age of 10 to 15 billion years for the age of the Universe.
2 http://en.wikipedia.org/wiki/Age_of_the_universe
$3 \quad$ http://arxiv.org/pdf/1001.4744v1.pdf
Microwave Anisotropy Probe Observations, Page 39, By N. Jarosik
4 http://en.wikipedia.org/wiki/Age_of the Earth
5 http://sp.lyellcollection.org/content/190/1/205
The age of the Earth, G. Brent Dalrymple
Geological Society, London, Special Publications, January 1, 2001, Volume 190, Pages 205-221
6 The age of the earth, Gérard Manhes
Earth and Planetary Science Letters, Volume 47, Issue 3, May 1980, Pages 370-382
7 http://www.bgc.org/isoplot etc/isoplot.html
8 Radioactive and Stable Isotope Geology, By H.G. Attendon, Chapman And Hall Publishers, 1997. Page 73 [Rb/Sr], 195 [K/Ar], 295 [Re/OS], 305 [Nd/Nd].

Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986. Pages 120 [Rb/Sr], 205 [Nd/Sm], 252 [Lu/Hf], 266 [Re/OS], 269 [Os/OS].

Absolute Age Determination, Mebus A. Geyh, Springer-Verlag Publishers, Berlin, 1990.
Pages 80 [Rb/Sr], 98 [Nd/Sm], 108 [Lu/Hf], 112 [Re/OS].
Radiogenic Isotope Geology, Second Edition, By Alan P. Dickin, Cambridge University Press, 2005. Pages 43 [Rb/Sr], 70 [Nd/Sm], 205 [Re/OS], 208 [Pt/OS], 232 [Lu/Hf].

Early Archaean Rocks At Fyfe Hills, Precambrian Research, Volume 21, 1983, Pages 197
Reference 12, Page 211
Reference 12, Page 215
Shock-Melted Antarctic LL-Chondrites, Geochimica et Cosmochimica Acta, 1990, Voume 54, Pages 3509
Reference 15, Page 3517
Diamonds And Mantle-Derived Xenoliths, Earth and Planetary Science Letters, Volume 42, 1979, Pages 58

Reference 17, Page 66
Reference 17, Page 64
87Rb-87Sr Isochron Of The Norton County Achondrite, Earth And Planetary Science Letters, Volume 3, 1967, Pages 179

Reference 20, Page 182
Base and Precious Metal Veins, Economic Geology, Volume 97, 2002, Pages 23
Reference 22, Page 27, 28
Reference 22, Page 29
Reference 22, Page 34-37
The Munchberg Massif, Southern Germany, Earth and Planetary Science Letters, Volume 99, 1990, Pages 230

Rocks of the Central Wyoming Province, Canadian Journal Of Earth Science, 2006, Volume 43, Pages 1419

Reference 27, Page 1436-1437
Reference 27, Page 1439
Basalts From Apollo 15, Earth and Planetary Science Letters, Volume 17, 1973, Pages 324
Reference 30, Page 334
Reference 30, Page 332
History Of The Pasamonte Achondrite, Earth and Planetary Science Letters, Volume 37, 1977, Pages 1
Reference 33, Pages 3, 9

35 Sr Isotopic Composition Of Afar Volcanics, Earth and Planetary Science Letters, Volume 50, 1980, Pages 247

36 Reference 35, Page 249
37 Reference 35, Page 250, 251
Orogenic Lherzolite Complexes, Earth and Planetary Science Letters, Volume 51, 1980, Pages 71
Reference 37, Page 72
Reference 37, Pages 78-80
40 Isotopic Geochemistry ($\mathrm{O}, \mathrm{Sr}, \mathrm{Pb}$), Earth and Planetary Science Letters, Volume 61, 1982, Pages 97

Reference 40, Pages 101, 102
Reference 40, Pages 104
Cretaceous-Tertiary Boundary Sediments, Earth and Planetary Science Letters, Volume 64, 1983, Pages 356

Reference 43, Pages 361
Correlated N D, Sr And Pb Isotope Variation, Earth and Planetary Science Letters, Volume 59, 1982, Pages 327

Reference 45, Pages 330, 331
A Depleted Mantle Source For Kimberlites, Earth and Planetary Science Letters, Volume 73, 1985, Pages 269

Reference 47, Pages 270
Reference 47, Pages 271, 273
Sm-Nd Isotopic Systematics, Earth and Planetary Science Letters, Volume 71, 1984, Pages 46
Reference 50, Pages 49
Strontium, Neodymium And Lead Compositions, Earth and Planetary Science Letters, Volume 75, 1985, Pages 354-368

Reference 52, Pages 356, 363
54 Trace Element And Sr And Nd Isotope, Earth and Planetary Science Letters, Volume 80, 1986, Pages 281-298

Reference 54, Pages 287
Reference 54, Pages 289
The southeast Australian Lithosphere Mantle, Earth and Planetary Science Letters, Volume 86, 1987, Pages 327

Reference 57, Pages 332
Reference 57, Pages 330, 332

60 Strontium, neodymium and lead isotopic, Earth and Planetary Science Letters, Volume 90, 1988, Pages 26-40

61 Reference 60, Pages 35
62 Reference 60, Pages 31
63 Sr, Nd, and Os isotope geochemistry, Earth and Planetary Science Letters, Volume 99, 1990, Pages 362
64 Reference 63, Pages 364
65 Reference 63, Pages 365, 368
66 Pb , Nd and Sr isotopic geochemistry, Earth and Planetary Science Letters, Volume 105, 1991, Pages 149
67 Reference 66, Pages 154, 160
67 Reference 66, Pages 156, 157
68 Sr, Nd, and Pb isotopes, Earth and Planetary Science Letters, Volume 113, 1992, Pages 107
69 Reference 68, Pages 110
70 Production of Jurassic Rhyolite, Earth and Planetary Science Letters, Volume 134, 1995, Pages 23-36

Reference 70, Pages 25
Evolution of Reunion Hotspot Mantle, Earth and Planetary Science Letters, Volume 134, 1995, Pages 169-185

Reference 72, Pages 173
Reference 72, Pages 174
Reference 72, Pages 180
An extremely low U/Pb source, Geochimica et Cosmochimica Acta, 1993, Volume 57, Pages 4687-4702

Reference 75, Pages 4690, 4691
The 72 Ma Geochemical Evolution, Earth and Planetary Science Letters, Volume 183, 2000, Pages 73
Reference 77, Pages 76-79
The Himalayan collision zone, Earth and Planetary Science Letters, Volume 244, 2006, Pages 234

Reference 79, Pages 234, 235
Reference 79, Pages 238
Reference 79, Pages 242
Evidence for a Non Magmatic Component, Geochimica et Cosmochimica Acta, 2001, Volume 65, Number 4, Pages 571

108 Temporal Evolution of the Lithospheric Mantle, Journal Of Petrology, 2009, Volume 50, Number 10, Pages 1857

Reference 108, Pages 1873, 1874, 1877, 1879, 1880
110 Petrogenesis and Origins of Mid-Cretaceous, Journal Of Petrology, 2010, Volume 51, Number 10, Pages 2003-2045

111 Reference 110, Pages 2038
112 Reference 110, Pages 2024-2026
113 The Petrogenetic Association of Carbonatite, Journal Of Petrology, 1999, Volume 40, Number 4, Pages 525

114 Reference 113, Pages 534, 535
115 Geochemistry of Jurassic Oceanic Crust, Journal Of Petrology, 1998, Volume 39, Number 5, Pages 859-880

116 Reference 115, Pages 867, 868
117 The age of Dar al Gani 476, Geochimica Et Cosmochimica Acta, 2003, Volume 67, Number 18, Pages 3519-3536

118 Reference 117, Pages 3523
119 Petrogenesis of the Flood Basalts, Journal Of Petrology, 1998, Volume 39, Number 4, Pages 711-748

120 Reference 119, Pages 729, 730
121 Nature of the Source Regions, Journal Of Petrology, 2004, Volume 45, Number 3, Pages 555
122 Reference 121, Pages 556
123 Reference 121, Pages 566, 575, 576
124 Generation of Palaeocene Adakitic Andesites, Journal Of Petrology, 2007, Volume 48, Number 4, Pages 661

125 Reference 124, Pages 676-678
126 Reference 124, Pages 684
127 Evidence for a Widespread Tethyan, Journal Of Petrology, 2005, Volume 46, Number 4, Pages 829-858

128 Reference 127, Pages 831
129 Reference 127, Pages 840
130 Reference 127, Pages 832-837
131 Post-Collisional Potassic and Ultrapotassic , Journal Of Petrology, 1999, Volume 40, Number 9, Pages 1399-1424

132 Reference 131, Pages 1403, 1405, 1406
133 Reference 131, Pages 1414, 1415
134 Origin of the Indian Ocean-type isotopic signature, Journal Of Geophysical Research, 1998, Volume 103, Number B9, Pages 20,963

Reference 134, Pages 20965, 20969

142 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

Reference 142, Page 23
Reference 142, Page 287

www.creation.com

